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ABSTRACT-The new non-linear fractional-order 

PID controller (NLFPID) is designed to control 

combined and non-linear two-link rigid robots. The 

structure of the proposed controller consists of a 

nonlinear hyperbolic instantaneous error function and 

the present state cascaded to fractions. Order PID 

(FOPID). The non-linear feature enables adaptive 

control and the inclusion of the fraction operator 

increases the flexibility of the designed controller. 

Learn the comparative advantages of NLF PID 

controllers. 
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MATLAB, Lagrangian, Manipulator. 

 

I. INTRODUCTION 
Robot operators are very useful in various 

real life applications that work in industrial 

production and automation, medical deposit, safety, 

harmful conditions and spaceships. Various links and 

assemblies can process objects and functions of 

human movements to successfully process objects 

with accurate positioning and desired locations. 

Recently, a wide range of robotic hands have created 

a study in the design and control direction of 

Eneeffuner in a robot control. Some elements of 

creating these systems of complex devices include 

nonlinear during transformation of dynamics, time 

diseases, and payloads. If a timely is not perfectly 

removed or oppressed or oppressed, these unwanted 

amazing elements of the robot system can adversely 

affect performance. The system may exhibit 

performance degradation and instability associated 

with complete trajectory and pick-and-place 

operations during the execution phase. Because of 

these factors, it is a difficult task to efficiently, 

reliably and accurately control a robotic arm with an 

intelligent controller. Designing and implementing an 

efficient controller requires expertise, including 

expertise in the dynamics of a robotic arm due to the 

torque generated by the actuator. In the past, various 

control strategies have been widely used in robotic 

arms to achieve desired performance. 

Two degrees of freedom (2DOF) pointing 

mechanisms are widely used in stable platforms, 

beacons and other fields. Besides the commonly used 

serial gimbals, there are two types of parallel pointing 

mechanisms. H. Equal Diameter Spherical Parallel 

Manipulator (SPM) and Spherical Pure Rolling 

(ESPR) Parallel Manipulators are increasingly 

affected. All of these pointing mechanisms have two 

rotational DOFs, but exhibit very different motion 

characteristics. A typical difference that exists 

between these three pointing mechanisms lies in the 

properties of proper motion, also called rotational 

motion by the authors. According to our research, 

rotational motion is basically a component of the 

actual rotation of the movable platform. Additionally, 

using the pointing mechanism as a tracking device, 

image distortions caused by the 2 rotational motions 

are identified and distinguished. The conclusions are 

that it facilitates the design and control of pointing 

devices and has the potential to improve the 

measurement accuracy of target pointing and tracking. 

 

1.2 Mathematical Model of Robotic Manipulator 

A two-link planar rigid body system of a 

robotic manipulator with two degrees of freedom is 

described in this section and shown in Figure 1. A 

mechanical model of the two-link robotic manipulator 

under consideration is shown in Figure 1. Located at 

the end of each link, drive, and encoder. The first link 

of the system is mounted on a hard floor with friction-

free hinges and the second link is mounted on the end 

of the first link with friction-free ball bearings. The 

third link is also attached to the second link of the 

frictionless ball bearing. 

 

1.3 Dynamics of 2 link rigid robots 

A double pendulum is an example of a 

simple physical system that exhibits chaotic behavior. 

Understanding the two-link manipulator [6] is key to 
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learning the whole robot manipulator. Think of as a 

two-legged robotic manipulator. This is a classic 

example of an introductory robotics course. A 

physical system is shown in Figure 1. 

 
Figure 1 

 

x1 = L1cos⁡ θ1 , y1 = L1sin⁡ θ1 .     (1.1) 

Similarly, the equations for the x-position and the y-position of M2 are given by 

x2 = L1cos⁡ θ1 + L2cos⁡ θ2 , y2 = L1sin⁡ θ1 + L2sin⁡ θ2      
 (1.2) 

v1 =  x 1
2 + y 1

2, v2 =  x 2
2 + y 2

2       (1.3) 

where, 

x 1 = −L1θ 1sin⁡ θ1 , y 1 = L1θ 1cos⁡ θ1 

x 2 = −L1θ 1sin⁡ θ1 − L2θ 2sin⁡ θ2 , y 2 = L1θ 1cos⁡ θ1 + L2θ 2cos⁡ θ2 
 

Here and below the dot ′ is a derivative with respect to t, i.e., θ k =
dθk

dt
, x k =

dxk

dt
, for k = 1,2. The kinematic 

energy can be calculated as follows 

KE =
1

2
M1v1

2 +
1

2
M2v2

2.           

 (1.4) 

The equation for the kinetic energy can be written as 

KE =
1

2
M1 x 1

2 + y 1
2 +

1

2
M2 x 2

2 + y 2
2 .      (1.5) 

Substituting (1.1) - (1.2) into (1.5), we get 

KE =
1

2
M1   −L1θ 1sin⁡ θ1  

2

+  L1θ 1cos⁡ θ1  
2

 

+
1

2
M2  

 −L1θ 1 sin θ1 − L2θ 2 sin θ2  
2

+

 L1θ 1cos⁡ θ1 + L2θ 2cos⁡ θ2  
2  ,

 

which can be simplified as 

KE =
1

2
 M1 + M2 L1

2θ 1
2 +

1

2
M2L2

2θ 2
2 + M2L1L2θ 1θ 2cos⁡ θ1 − θ2 .   (1.6) 

 

In order to calculate the Lagrangian, the potential 

energy PE has to be calculated. By definition the 

potential energy of the system due to gravity of the ith  

pendulum is 

PEi(θ) = Mighi(θ), i = 1,2,   

   (1.7) 

where hi is the height of the center of mass of the ith  

pendulum, g is the acceleration due to gravity 

constant, and Mi is the mass of the ith  pendulum. 

Therefore, the total potential energy for both 

pendulums can be given by 

PE = PE θ =   2
i=1  PEi θ =   2

i=1  Mighi θ = MgL1sin⁡ θ1 + M2g L1sin⁡ θ1 + L2sin⁡ θ2  

=  M1 + M2 gL1sin⁡ θ1 + M2gL2sin⁡ θ2 
(1.8)  

 

 

 

Next, by Lagrange Dynamics, we form the  
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Lagrangian ℒ which is defined as 

ℒ = KE − PE     

   (1.9) 

Substituting the expressions for the kinetic energy 

(1.6) and potential energy (1.8) in for KE and PE we 

get 

ℒ =
1

2
 M1 + M2 L1

2θ 1
2 +

1

2
M2L2

2θ 2
2

+ M2L1L2θ 1θ 2cos⁡ θ1 − θ2 
−  M1 + M2  

gL1sin⁡ θ1 − M2gL2sin⁡ θ2    
     (1.10) 

The Euler-Lagrange equation is given by the equation 
d

dt
 
∂ℒ

∂θ i
 −

∂ℒ

∂θ i
= τi , i = 1,2,    

   (1.11) 

Whereτi is the torque applied to the ith  link. 

The derivations for the Lagrangian equation and 

Euler-Lagrange equation can be found in [1]. We 

were more concerned with using the formulas in this 

problem rather than going into too much in detail for 

these derivations. 

 

 

From (1.10), we have 
∂ℒ

∂θ i

=  M1 + M2 L1
2θ 1 + M2L1L2θ 2cos⁡ θ1 − θ2 ,

∂ℒ

∂θ1

= −M2L1L2θ 1θ 2 sin θ1 − θ2 −  M1 + M2 gL1cos⁡ θ1 ,

 

and 

d

dt
 
∂ℒ

∂θ i

 =  M1 + M2 L1
2θ 1 + M2L1L2θ 2cos⁡ θ1 − θ2 − M2L1L2θ 2 θ 1 − θ 2 sin⁡ θ1 − θ2 . 

Similarly, we compute 
∂ℒ

∂θ 2

= M2L2
2θ 2 + M2L1L2θ 1cos⁡ θ1 − θ2 

∂ℒ

∂θ2

= M2L1L2θ 1θ 2sin⁡ θ1 − θ2 − M2gL2cos⁡ θ2 

 

and 

d

dt
 
∂ℒ

∂θ 2

 = M2L2
2θ 2 + M2L1L2θ 1cos⁡ θ1 − θ2 − M2L1L2θ 1 θ 1 − θ 2 sin⁡ θ1 − θ2 . 

Therefore, (1.11) gives the following two nonlinear equations of motion which are second-order system of 

ordinary differential equations 

 M1 + M2 L2
2θ 1 + M2L1L2θ 2cos⁡ θ1 − θ2 +

M2L1L2θ 2
2sin⁡ θ1 − θ2 +  M1 + M2 gL1cos⁡ θ1 = τ1,

     

 (1.12) 

M2L2
2θ 2 + M2L1L2θ 2cos⁡ θ1 − θ2 − M2L1L2θ 1

2sin⁡ θ1 − θ2 + M2gL2cos⁡ θ2 = τ2, 
or equivalently, 

L1θ 1 + δL1L2θ 2 cos θ1 − θ2 =
δτ1

M2L1

− δL2θ 2
2sin⁡ θ1 − θ2 − gcos⁡ θ1 ,

L2θ 2 + L1θ 1cos⁡ θ1 − θ2 =
τ2

M2L2

+ L1θ 1
2sin⁡ θ1 − θ2 − gcos⁡ θ2 ,

 

where, δ =
M2

M1+M2
 

Solving for θ 1 and θ 2, we get the normal form of the dynamics equations 

θ 1 = g1 t, θ1 , θ2 , θ 1, θ 2 , θ 2 = g2 t, θ1 , θ2, θ 1, θ 2 , 
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g1 =

δτ1

M2L1
− δL2θ 2

2 sin θ1 − θ2 − g cos θ1 − δ cos θ1 − θ2 

 
τ2

M2L2
+ L1θ 1

2sin⁡ θ1 − θ2 − gcos⁡ θ2  

L1 1 − δcos2⁡ θ1 − θ2  
,

g2 =

τ2

M2L2
+ L1θ 1

2 sin θ1 − θ2 − gcos θ2 − cos θ1 − θ2 

 
δτ1

M2L1
+ δL2θ 2

2sin⁡ θ1 − θ2 − gcos⁡ θ1  

L2 1 − δcos2⁡ θ1 − θ2  
.

 

 

In order to solve for the angles θ1 and θ2, we need to 

solve the above second-order system of ordinary 

differential equations. To do this, we first reduce the 

system into an equivalent system of first-order 

ordinary differential equations. 

Let us introduce four new variables 

u1 = θ1 , u2 = θ2 , u3 = θ 1, u4 = θ 2.  

After differentiating, we have 

u 1 = θ 1 = u3 , u 2 = θ 2 = u4, u 3 = θ 1

= g1 t, u1, u2, u3 , u4 , u 4 = θ 2

= g2 t, u1, u2, u3, u4  
Thus, we obtain a system of first-order nonlinear 

differential equations of the form 
d𝐔

dt
= 𝐒(t, 𝐔), 𝐔(0) = 𝐔0,    

      

 (1.16a) 

Where 𝐔 =  u1 , u2, u3, u4 
t  and 𝐒 =  s1 , s2 , s3 , s4 

t  

with 

s1 = u3 , s2 = u4, s3 = g1 t, u1, u2, u3, u4 , s4

= g2 t, u1, u2, u3, u4  
The initial conditions are given by 

𝐔0 =  u1(0), u2(0), u3(0), u4(0),  t ,  

      

  (1.16b) 

Where, 

u1(0) = θ1(0), u2(0) = θ2(0), u3(0) = θ 1(0), u4(0)
= θ 2(0). 

The system (1.16a) subject to the initial condition 

(1.16b) can be solved for the unknown vector𝐔, using, 

for example, the ode45 command defined in 

MATLAB to solve the system of ordinary differential 

equations numerically. This command is based on the 

fourth-order Runge-Kutta method. Table 1: The PID 

terms and their effect on a control system. 

 

 
Table 1 

 

PID Controller Design 

Robotic manipulators are generally difficult 

to control. In particular, it is a challenging task to 

stabilize a robot manipulator at a fixed, accurate 

position. In this section, we focus mainly on control 

of the robot manipulator to get the desired position 

using computed torque control method [4]. After 

deriving the equation of motion, control simulation is 

represented using MATLAB. 

We define control as the ability to hold the 

system of two links in a particular position on the xy-

plane. Having control gives us the ability to hold each 

link at a particular angle θi  with respect to the positive 

x-axis. The proportional-integral-derivative (PID) 

controller is a common control algorithm [5]. The "P" 

in PID stands for Proportional control, the "I" stands 

for Integral control, and the "D" stands for Derivative 

control. This algorithm works by defining an error 

variable Verror = Vset − Vsensor  that takes the position 

we want to go  Vset   minus the position we are 

actually at  Vsensor  . We get the proportional part of 
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the PID control by taking a constant defined as Kp  

and multiplying it by the error. The I comes from 

taking a constant K1 and multiplying it by the integral 

of the error with respect to time. Derivative control is 

defined as a constant KD  multiplied by the derivative 

of the error with respect to time. Many industrial 

processes are controlled using PID controllers. Below 

is a table describing PID control Table 1. 

 

The equations of motion (1.12) can be written compactly as 

M(𝛉)𝛉 + 𝐜(𝛉, 𝛉 ) + 𝐆(𝛉) = 𝐅 
where, 

𝛉 =  
θ1

θ2
 , M(𝛉) =  

 M1 + M2 L1
2 M2L1L2cos⁡ θ1 − θ2 

M2L1L2cos⁡ θ1 − θ2 M2L2
2  ,𝐜 𝛉, 𝛉  =  

M2L1L2θ 2
2 sin θ1 − θ2 

−M2L1L2θ 1
2 sin θ1 − θ2 

 , 

𝐆(𝛉) =  
 M1 + M2 gL1cos⁡ θ1 

M2gL2cos⁡ θ2 
 , = 𝐅  

τ1

τ2
 , 

We can solve for some theoretical values of forces given certain initial inputs. Solving for 𝛉  we get 

θ = −M−1(θ)[𝐜(𝛉, θ ) + 𝐆(𝛉)] + 𝐅  
Where 

𝐅 = M−1(𝛉)𝐅. 

Thus, we decoupled the system to have the new input 

𝐅 =  
f1

f2
  

However, the physical torque inputs to the system arè 

𝐅 =  
τ1

τ2
 = M(𝛉)  

f1

f2
  

Let us denote the error signals by 

e θ1 = θ1f − θ1 , e θ2 = θ2f − θ2 , 
Where the target positions of M1 and M2 are given by the angles θ1f  and θ2f , respectively. 

We assume that the system has initial positions 

θ0 =  
θ1(0)
θ2(0)

 . 

A common technique for controlling a system with input is to use the following general structure of PID 

controller 

f = KP e + KD e + K1  edt 

In our situation, the technique for controlling the double pendulum system with inputs f1 and f2 is to employ two 

independent controllers, one for each link, as follows 

f1 = KP1
e1 θ1 + KD1

e 1 θ1 + KI1
 e θ1 dt = KP1

 θ1f − θ1 − KD1
θ 1 + KI1

  θ1f − θ1 dt,

f2 = KP2
e2 θ2 + KD2

e 2 θ2 + KI2
 e θ21 dt = KP2

 θ2f − θ2 − KD2
θ 2 + KI2

  θ2f − θ2 dt,
 

Where θ1f  and θ2f  are given constants. 

The complete system of equations with control is then 

θ = −M−1(𝛉)[𝐜(𝛉, θ ) + 𝐆(𝛉)] + 𝐅 , 
Where 

𝐅 =  
f1

f2
 =  

KP1
 θ1f − θ1 − KD1

θ 1 + KI1
  θ1f − θ1 dt

KP2
 θ2f − θ2 − KD2

θ 2 + KI2
  θ2f − θ2 dt

 . 

We would like to emphasize that the actual physical torques are 

 
τ1

τ2
 = M(𝛉)  

f1

f2
  

To implement the PID controller, we introduce the following new states 

x1 =  e θ1 dt, x2 =  e θ2 dt.  

Differentiating with respect to t gives 

x 1 = e θ1 = θ1f − θ1 , x 2 = e θ2 = θ2f − θ2 . 
The complete equations are 
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x 1 = θ1f − θ1 ,

x 2 = θ2f − θ2 ,

 
θ 1

θ 2

 = −M−1 𝛉  𝐜 𝛉, θ  + 𝐆 𝛉  +  
KP1

 θ1f − θ1 − KD1
θ 1 + KI1

x1

KP2
 θ2f − θ2 − KD2

θ 2 + KI2
x2

 

 
τ1

τ2
 = M(𝛉)  

KP1
 θ1f − θ1 − KD1

θ 1 + KI1
x1

KP2
 θ2f − θ2 − KD2

θ 2 + KI2
x2

 

 

To discretize the above system of differential equations in time, we transform them into a system of first-order 

ordinary differential equations. To do this, we define six new variables as follows 

u1 = x1, u2 = x2, u3 = θ1, u4 = θ2 , u5 = θ 1 , u6 = θ 2, 
After differentiating, we have 

u 1 = x 1 = θ1f − u3, u 2 = x 2 = θ2f − u4,

u 3 = θ 1 = u5, u 4 = θ 2 = u6,

u 5 = θ 1 = ϕ t, u1, u2 , u3 , u4, u5, u6 , u 6 = θ 2 = ψ t, u1 , u2, u3, u4, u5 , u6 ,

 

where ϕ and ψ are expressed in terms of ukk k = 1 − 6, as 

 
ϕ
ψ
 = −M−1(𝛉)[𝐜(𝛉, 𝛉 ) + 𝐆(𝛉)] +  

KP1
 θ1f − u3 − KD1

u5 + KI1
u1

KP2
 θ2f − u4 − KD2

u6 + KI2
u2
 

 and 𝛉 =  
u3

u4
 .

 

A simple calculation shows that 

ϕ =
−M2L2u6

2sin⁡ u3 − u4 −  M1 + M2 gcos⁡ u3 − M2cos⁡ u3 − u4  L1u5
2sin⁡ u3 − u4 − gcos⁡ u4  

L1 M1 + M2 − M2cos2⁡ u3 − u4  

+KP1
 θ1f − u3 − KD1

u5 + KI1
u1 ,

ψ =
cos⁡ u3 − u4  M2L2u6

2sin⁡ u3 − u4 +  M1 + M2 gcos⁡ u3  +  M1 + M2  L1u5
2sin⁡ u3 − u4 − gcos⁡ u4  

L2 M1 + M2 −M2cos2⁡ u3 − u4  

+KP2
 θ2f − u4 − KD2

u6 + KI2
u2

 

Thus, we obtain a system of first-order nonlinear differential equations of the form 
𝑑𝑼

𝑑𝑡
= 𝑯(𝑡, 𝑼), 𝑼(0) = 𝑼0, 

Where 𝑼 =  𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6 
𝑡  and 𝑯 =  ℎ1, ℎ2 , ℎ3, ℎ4, ℎ5 , ℎ6 

𝑡  with 

ℎ1 = 𝜃1𝑓 − 𝑢3, ℎ2 = 𝜃2𝑓 − 𝑢4, ℎ3 = 𝑢5, ℎ4 = 𝑢6, 

ℎ5 = 𝜙 𝑡, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 , 𝑢6 , ℎ6 = 𝜓 𝑡, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6 . 
The initial conditions are given by 

𝑼0 =  𝑢1(0), 𝑢2(0), 𝑢3(0), 𝑢4(0), 𝑢5(0), 𝑢6(0) 𝑡 , 
Where, 

𝑢1(0) = 𝑥1(0), 𝑥2(0) = 𝜃2(0), 𝑢3(0) = 𝜃1(0), 𝑢4(0) = 𝜃2(0), 𝑢5(0) = 𝜃 1(0), 𝑢6(0) = 𝜃 2(0).  

 

The system [3] can be solved for the unknown vector 𝑼, using, for example, the ode45 command defined in 

MATLAB to solve the system of ordinary differential equations numerically. This command is based on the 

fourth-order Runge-Kutta method. For more details consult[2]. 
Once we solve for, we obtain to torques using 𝑼 =  𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6 

𝑡  

 
𝜏1

𝜏2
 = 𝑀(𝜽)  

𝐾𝑃1
 𝜃1𝑓 − 𝑢3 − 𝐾𝐷1

𝑢5 + 𝐾𝐼1𝑢1

𝐾𝑃2
 𝜃2𝑓 − 𝑢4 − 𝐾𝐷2

𝑢6 + 𝐾𝐼2𝑢2

 , 

or equivalently, 

1.3 

𝜏1 =  𝑀1 + 𝑀2 𝐿1
2 𝐾𝑃1

 𝜃1𝑓 − 𝑢3 − 𝐾𝐷1
𝑢5 + 𝐾𝐼1𝑢1 

+𝑀2𝐿1𝐿2𝑐𝑜𝑠⁡ 𝑢3 − 𝑢4  𝐾𝑃2
 𝜃2𝑓 − 𝑢4 − 𝐾𝐷2

𝑢6 + 𝐾𝐼2𝑢2 ,

𝜏2 = 𝑀2𝐿1𝐿2𝑐𝑜𝑠⁡ 𝑢3 − 𝑢4  KP1
 θ1f − u3 − KD1

u5 + KI1
u1 + M2L2

2  KP2
 θ2f − u4 − KD2

u6 + KI2
zu2 .
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II. CONCLUSION 
THE PID CONTROLLER HELPS GET THE 

OUTPUTS, WHICH ARE THE FINAL POSITIONS OF M1 AND 

M2 DETERMINED BY THE ANGLES Θ1 AND Θ2, WHERE 

WE WANT IT, IN A SHORT TIME, WITH MINIMAL 

OVERSHOOT, AND WITH LITTLE ERROR. THIS WILL BE 

DEMONSTRATED USING THE FOLLOWING EXAMPLES. 

Example 1. We consider the simplified model of a 

two-link manipulator shown in Figure 1. In this 

experiment, we take the following parameters 

 

M1 = M2 = 1, L2 = 2, L2 = 1. 
M1 = M2 = 1, L2 = 2, L2 = 1 

The target positions (final positions) are  
θ1f

θ2f
 =

 
π/2

0
  

The initial positions, initial angle velocities, and 

initial states are, respectively, taken as 

 
θ1(0)
θ2(0)

 =  
π/2
π/2

 ,  
θ 1(0)

θ 2(0)
 =  

0
0
 ,  

x1(0)
x2(0)

 =  
0
0
 . 

The PID parameters for θ1 and θ2, are taken as 
KP1 = 30, KD1 = 15, KI1 = 20,
KP2 = 30, KD2 = 10, KI2 = 20.

 

In Figure 2, we show the initial and target positions of 

the two-link manipulator. Next, we plot the positions 

θ1 and θ2 of M1 and M2 versus time over the interval 

[0,30] in Figure 3. 

 

 
Figure 2: The initial positions (left) and the final position (right) of M1 and M2 for example 1. 

 
Figure 3:The positions of M1 (left) and M2 (right) versus time for example 1. 
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In Figure 4 we present the difference between where 

we want to go and where we are actually at i.e., 

e θ1 = θ1f − θ1 , e θ2 = θ2f − θ2,  

where θ1f  and θ2f  are the target positions and θ1(t) 

and θ2(t) are the numerical approximations obtained 

by solving the system of ODEs. These results indicate 

that the PID controller gets the final positions. 

 
Figure 4:The errors e(θ1) = θ1(t) -θ1f  and e(θ2)=θ2(t) -θ2f versus time for example 1. 
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