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ABSTRACT:  The dynamics of a stiffened elastic 

system subjected to multi-moving masses have 

been solved. The study attempts to investigate the 

dynamic behaviour given a singularity functional in 

the system in the context of applied elasticity 

following the influence of distributed moving 

masses. The present solutions are derived using 

Navier’s method and Galerkin’s approach. Using 

Navier’s solution, the numerical results are 

presented if a moderately thick parent plate is 

considered. The dynamic system is solved by using 

Runge Kutta fourth-order method. The study 

reveals the effects of singularity (stiffener) and 

velocity on the behaviour of the system. 

KEYWORDS: Dynamics, moving mass moving 

force system, stiffened plates, singularity function. 

 

I. INTRODUCTION 
The dynamic behaviour of a continuous 

elastic system under the influence of a moving 

system is a subject of considerable engineering 

importance, from structural to mechanical to 

marine and aerospace engineering. The dynamic 

behaviour of a beam subjected to moving load or 

moving masses have been extensively studied in 

connection with bridges, guideways, overhead 

cranes, rails, roadways, runways, tunnels and 

pipelines, other machining processes, and guide-

way systems [1-10] and [12-15]; the specifics 

chosen in this article are motivated by bridge 

transportation, this research domain is still very 

active as mathematicians and engineers are 

seriously engaged in developing a deeper 

understanding of the structures behaviour to 

moving mass, moving force system.  

Studies so far have been restrained to 

homogenous elastic systems, for which 

mathematical representations and complications are 

rather simplified. In the case of stiffened plates 

under moving masses, studies are few, especially 

for bridge-like structures. Application of finite 

element approaches such as in [1] showed that high 

computational effort and time is required to solve 

such problem. The fundamental mathematical 

complexity encountered in this problem lies in the 

discretised coupled system to the varying time 

function. This step function represents the interplay 

of inertial forces due to moving mass inertia.  

A vast majority of the analytical studies 

dealing with the moving load moving mass 

problems utilized the Fourier transformation 

method to solve the governing differential 

equations. To mention a few, Stanisic et. al. [12] 

used the Fourier transform technique to develop a 

coupled resultant differential equation to solve for 

plate system, he applied definite cosine series to 

deal with Dirac function that describes the motion 

of moving masses, although his approach is 

constrained by assumptions of thin plate theory. 

Gbadeyin and Oni [4] further solved the problem 

with variable coefficient in the resultant coupled 

transformed differential equation using modified 

Struble's method. Mofid, et. al. [13] transformed 

the differential equation into series of 

eigenfunctions as modal vibrational responses. Ho 

& Tham [7], Ng & Chen [14] investigated the 

dynamic response of single and multi-span plates 

subjected to a moving mass by using numerical 

method. In the case of stiffened plates, Chueng, et 

al. [2] used the method of the finite strip to analyse 

continuous slab girder bridge decks. His approach 

requires the derivation of the dynamic stiffness 

matrix of the stiffening rib and its coupling 

formulation with strips, in such a way that the 

thickness varies longitudinally. 

The interest of this study is a semi-

analytical development in the context of applied 

elasticity which often highlights stringent 

information concerning the physical system when 

subjected to a distributed moving mass. 

II. PROBLEM FORMULATION 
A rectangular plate shown in figure 1 

stiffened in the direction parallel to one of the 

edges, is examined. The singularities in the 

stiffness and mass distribution of the plate has been 

built in applying elasticity principle described 

below. 
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Fig. 1. Bridge Deck 

  

The relationships between the stresses and strains and displacement fields and accounting for the stiffeners are given as 
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The function maybe a sinusoidal function according to Zenkour [19] 
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Eq. (1) can better be represented as 
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Kinetics of the system are developed by integrating the biaxial stresses through the plate thickness and uniaxial stresses over 

the stiffeners to give  
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Which becomes 
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While observing the following definitions  
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Equilibrium Equation 

The equations of equilibrium and boundary conditions can be derived using Hamilton’s principle as: 
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where 
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Eq. (14) are used to investigate the vibration and dynamic stability of stiffened plates. The moving-force problem is 

described below, with associated convective terms as approximations to the moving mass system 

III. CLOSE-FORM SOLUTION 

The simply- supported boundary conditions are: 
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Introducing eq. (19) into (14) and applying Galerkin method becomes 
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The dynamics of the elastic system is investigated by solving eq. (20) using Runge Kutta fourth-order method with the 

initial conditions w(0) = dw(0)/dt = 0. The determinant of the gives the natural frequencies (ω) of the plate as 
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The moving body force can be rewritten in the form 
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IV. NUMERICAL VERIFICATION AND 

DISCUSSIONS 
A rectangular stiffened plate of size a = b = 

10 m, and thickness h = 0.02 m. The material 

properties are E = 2.0 × 1011 Pa, v = 0.3, and ρ = 25 

kg/m
3
. The material properties of the stiffeners are 

same as the parent plate, with geometrical 

configuration of AASHTO girder VI; c = 2.6 m, area 

A = 0.70 m2, moment of area I = 0.3052 m4, polar 

moment J = 0.0164 m
4
. The present paper introduces 

an inert body of mass M = 31.9 × 10
3
 kg with applied 

velocities 10, 20, 30, and 50 m/s, and x0 = 3.75 m. 

The dimensionless frequency parameter used is 
2b

h E

ω ρ
Ω = and in good agreement with references in 

Table 1. 

 

Table 1. Natural frequency of unstiffened plate with opposite-sides simply supported 

Take h = 0.01 × a; b / a = 1.0; v = 0.3 

Mode (m,n) 

Theory 

Hash & Arsanjani [6] Leissa A. [11] 
Present 

Unstiffened Stiffened 

(1,1) 9.6945 9.87 9.9103 41.3275 

 

Figure 2 analyses the dynamic response of 

stiffened and unstiffened plate, at 15 m/s velocity and 

stiffener spacing 2.5 m. Obviously, the result shown 

is evident that the stiffener’s decrease the vibration 

amplitude of the plate. This condition is with respect 

to the coefficient of rigidity of the stiffening ribs. 

 

Figure 3a, 3b, 3c, and 3d analyses the 

dynamics response of the distributed moving masses 

for velocities 10, 20, 30, and 50 m/s respectively. It 

showed how maximum displacement is attained at 

shorter time with increase in velocity. It also showed 

that there exists increase in displacement of moving 
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masses of convective terms for a given natural 

frequency and velocity when compared with that of 

moving loads only. In figure 3a the convective effects 

were minimal, it shows that these terms directly 

affect the amplitude of displacements in the system. 

In figure 3b the moving masses increased appreciably 

than the moving force, this was evident in the 

interplay in maximum amplitude between the moving 

mass only and the mass with convective terms. In 

figure 3(c-d), it shows that velocity directly increases 

the amplitude of displacement of the moving mass 

system, and must be taken note of in any system of 

moving body especially that with very large mass. 

Figure 4a, 4b, and 4c analysis the effect of 

stiffener’s spacing for the distributed mass responses 

of the plates for velocities of 10, 20, and 30 m/s 

respectively and stiffener spacing 2.5 m. It is showed 

that increase in spacing between stiffeners decreases 

the rigidity of the plate and hence an increase in 

deformation of the system when subjected to 

convective masses. It also showed that maximum 

deformation is obtained in a shorter time as velocity 

of body masses increases. 

 

Fig. 2. Displacement relation between stiffened and unstiffened elastic system by moving force at velocity of 15 

m/sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Effect of convective terms with velocities (10, 20, 30, and 50 m/s) in the displacement of the system. 
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Fig. 4. Effect of stiffener spacing in the displacement relation of the system for 10, 20, and 30 m/s velocity 

 

V. CONCLUSION 
The study presented a close form solution 

to the stiffened plate model of bridge-like boundary 

conditions. It reported a solution to moving mass 

problem using Galerkin’s approach and Runge 

Kutta algorithm to deal with the complexity of the 

discretised coupled time dependent moving masses. 

The effect of stiffener spacing, and constant 

velocity variant has been studied. The deflection 

profile proves to be more stable at close-range 

stiffeners. The results obtained authenticates the 

theoretical assertion that high speed condition is 

detrimental to solid structure like highway bridges, 

and the importance of mass considerations in 

bridge design. 
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