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ABSTRACT: Functional inequalities are very
difficult. Many authors studied functional
inequatlities. In this paper, we would like to look at
some functional inequality problems about
harmonic means and arithmetic means.
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I. INTRODUCTION
In this paper, we would like to look at some
expressions
Harmonic means of argument

ﬂ,VX,yeD -
X+Yy
and

Arithmetic means of argument
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To solve functional inequlity problems,
we use substitution method. We usually substitute
special values
+) Let x = £ such that f(t} appears much in the
equation.
+) x = t.¥ = v interchange to refer f(t} and f{¥).
+)Let f(0) =v.fl)=v,...
+) To occur fx).
+) f(x) =fi(y) for all x, y € X. Hence
flx)} = const forallx € X,

1. ARITHMETIC MEANS AND
GEOMETRIC MEANS

Problem 1. Let a,ﬂeD. Determiner all
functions f :[1 —[1 satisfying for arbitrary
a, fell, we have
f()=4f(t)2at+pVtel, (1)

and

f(xzyjz f(X);f(y);VX,yeD. (2)

Solution. In (2), let X=t,y=—t, then

B=1(0)

(42

. f(t)+f(-t)

B 2

Z(at+,8)+(—at+ﬂ)
2

=h,Vtel.

Then f(t)=ot+ . We can check directly
f (t) = at + [ satisfies (1) and (2).

There for, f (t) =at+ f.
Corollary 1. Determiner all  functions
f:0 =0 suchthat

f(0)=0; f(t)>0;vtel, (3)

f(x+yJ2 f(x)+f

2 2

(y);VX,yeD ,(4)
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is f (X)EO.

Problem 2. Determiner all functions f(t) such
that

f(1)=%f(t)>Lvtel"; (5)

and

f(xzi(yyjz f(x)z f (y);VX,yeD . (6)

| =

Solution. Setting X=—,Y =—.By (6), we get

ARERE
5 _\u v

u+v |~ 2

2

C |-

—_ <

Vu,vel T,

or

g(u+vj2 Flu)+f (V);VU,VED “(7)

2 2
where
g(t):f@.
By (5, we have g(l)zl, and
g(t)=Lvtel "

setting g(t)=1+h(t), we have h(1)=0,
and h(t)ZO,‘v’teD*.
By (7), we get

h(uzv)z h(u);h(v);VU,VED *.

Let us show that h(t) =0 satisfies h(l) =0
and h(t)ZO,Vt el™.
In fact, with t e (O, 2], we have

0=h(1)

s

Jh(t)+h(2-t)
2=
> 0.

Hence, h(t) =0, forall te (0, 2]. There for,

=0

> 0.
Then h(2) =0.
So h(t)=0, for all te(O, 2].
Next, with t € (O, 22] we have

0=h(0)
=h(2)
t+(4-t)
:h[ .

Then h(t)=0, for all te(0,22], So that

=6
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Then h(22) =0. Conseuently, h(t)=0, for all We have,
te(O,ZZ}. g(uzvjzg(u)zg(v);Vu,VED+.
By induction method, let us that h(t) =0, for all
. By Problems 1, we have g(u)=LVuel ™.
te(O,Z”J, with nelJ . Then for g(t)zl
So, f (X) =1

Hence f (t)zl forall tell ™.
We can check directly f (t) =1lvtell*
satisfies (5) and (6).

Problem 3. Determiner all functions f(t) such
that

f(1)=Lf(t)2Lvted”; (8)

and
2
20 J[f (] Lf )]
X+Yy 2 ’
vx,yel™. (9)
Solution. By assumption, we have

f( )>O VX # 0. Then for

{[XZIyyH LX) ];[f(y)]z;

vx,yel™.

J 2 eI+ fm]
- ,

11
7+7
Xy
vXx,yel ™.
1 1
Setting U=—,v=—,Vu,vel”™, we get
X y

We can check directly
satisfies (8) and (9).
Problem 4. Determiner all functions f(t) such
that

f(1)=1%f(t)=Lvtel™; (10)

and

f(szxyyjzd[f<x>J";[f<y>J";

vx,yel ™. (11)

f(t)=Lvtel”

Solution. By assumption f (X) >0,vx=0. We
get

{(XZIyyﬂ L ];[f(y)]p;

VX, yel".

AR NG
Lol

11 B
7+7
Xy
vx,yel ™.
1 1
Setting U=—,v=—,Vu,vel ", weget
X y

DOI: 10.35629/5252-031214171420 Impact Factor value 7.429 | 1SO 9001: 2008 Certified Journal Page 1419



R /\ International Journal of Advances in Engineering and Management (IJAEM)
x\‘. Volume 3, Issue 12 Dec 2021, pp: 1417-1420 www.ijaem.net

IJAEM
p p
SLGIENG]
2 u Vv
f > X
[ (u +vﬂ 2
vu,vel".
Setting,
Yk
g(u):{f(aﬂ >1,Vu=0,9(1)=1.
We get
g(u+vj2 g(u)+g(v);Vu,vED i
2 2
By Problem (1), we have g(u)ELVU el”.
Then f(X)El.

We can check directly f (t) =lvtell”
satisfies (10) and (11).

I11. CONCLUSION
In this paper, we establish some problems about
harmonic means and arithmetic means. They are
very good for teachers and students.
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