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ABSTRACT: Numerical experiments of thermo-

hydromagnetic stabilization of liquid-metal based 

nanofluid consisting of Gallium liquid metal as base 

fluid with copper nanoparticles and then 

Cu/Diamond mixed nanoparticles in a Darcy and 

Darcy-Brinkman porous media is performed with 

the Chebyshev spectral technique for the resolution 

of the eigenvalue problem derived from the stability 

analysis of the system. The effects of the modified 

magnetic Chandrasekhar number Q, Nanoparticle 

Rayleigh number RN , modified diffusivity ratio NA , 

modified specific heat increment NB , Lewis number 

Le, Darcy number DaFurthermore, porosity ε on 

stabilization concerning critical Rayleigh numbers 

of the respective nanofluidic system are presented 

graphically and tabularly for the respective 

nanofluidic system and are compared. There is an 

excellent agreement between the results obtained 

from the numeric experiments and available results 

in the literature reviewed.KEYWORDS:(11 

Bold)Mixed nanoparticles, Liquid-metal Nanofluid, 

Critical Rayleigh number, Chebyshev spectral 

method, porous media, Brownian motion and 

Thermophoresis. 

 

I. INTRODUCTION 
Very shortly, most industrial device and 

machinery cooling systems will be filled with base 

liquid-metal nanofluids as coolants. Qureshi et al. 

(2016) describe Nanofluids as a novel dynamic sub-

class of nanotechnology. Nanofluid or nano-liquid is 

commonly the result of mixing nanoparticles with a 

base fluid. The base fluid recently and most 

investigated is water, but other fluids can be 

synthesized, such as liquid metal modelled in the 

system under investigation in this research work. 

These concepts of liquid metals as the base fluid for 

nanofluids are a highly viable study area in heat 

transfer developments (Kun-Quan et al., 2006). The 

need to develop a significantly higher thermal 

conductive and better heat transfer fluid apart from 

the conventional fluids such as water, oil, and 

ethylene glycol as coolants resulted in 

comprehensive research about nanofluid's 

characteristics. Usual nanofluids are generally made 

by dispersing nanoparticles such as copper or 

aluminium into the conventional liquids mentioned 

above. (Sakshi et al, 2011; Jing et al, 2006; Chang 

2014; Siddiqui et al., 2020). Nield et al. (2017) 

reviewed that nanofluid is a distinctive kind of 

multicomponent fluid. They also describe 

nanofluids as suspensions of particles unusually 

small in size within the range between 1 and 100nm 

suspended in a base fluid, which can also be an 

organic solvent. Nanofluids form very stable 

colloidal systems with very little settling and 

significant enhancement of effective thermal 

conductivity compared to the base fluid, as observed 

in some experiments. There are two different 

methods to study nanofluid systems: the effect of 

properties variation and the Buongiorno model. 

Arora et al. (2011) employed the effect of the 

variation of properties such as size and particle 

concentration, thermal conductivity, pressure and 

temperature to postulate that nanofluid is a future 

industrial coolant. Wakif et al. (2018) used the 

heterogeneous generalized Buongiorno model to 

investigate the onset of nanofluid convection under 
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the influence of a uniform transverse magnetic field. 

(Nield et al., 2017) also describe the Buongiorno 

model of the nanofluid as a two-component mixture 

(base fluid plus nanoparticles) with the following 

assumptions: Incompressible flow; No chemical 

reactions; Negligible external forces; Dilute 

mixture; Negligible viscous dissipation; Negligible 

radiative heat transfer; Nanoparticles and base fluid 

locally in thermal equilibrium. Hence, the 

formulation of conservation equations applicable to 

the liquid-metal-based nanofluid under investigation 

in the absence of a solid matrix is first outlined in 

the next section of this investigation.  

However, the key objective of this study is to 

investigate the stability and flow of Cu-Ga, 

Cu/Diamond-Ga and then compare it with that of 

Cu-Water nanofluid by numerically observing the 

effects of Da, Le, Pr, Rn on critical stability 

parameters under the influence of vertical magnetic 

field in a porous media. 

 

II. CONSTRUCTION OF THE NANOFLUIDIC SYSTEM(11 BOLD) 

 
Figure 1. The Physical Geometry of the Problem 

 

The geometry of the problem modelled is 

shown above in Figure 1, and the incompressible 

nano-liquid-metal is confined in a non-circular, very 

short vertical cylindrical enclosure saturated within 

Darcy-Brinkman porous medium heated uniformly 

from below with high temperature, Th , and cooled 

from above at Tc  is considered. The system is, 

however, subjected to both gravitational field 

g  ₌(0, 0, g) and a uniform vertical upward external 

magnetic field B   ₌(0, 0, B0). The non-circular 

vertical sidewalls of the systems are adiabatic. ϕh  

and ϕc  are taken as the corresponding volume 

fractions of the nanoparticles at the lower and upper 

regions of the nanofluidic system. A top-heavy and 

bottom-heavy distribution is set up for the nano-

liquid-metal model, as shown in Figure 1 above. 

Vertical impermeable no-slip boundary walls like 

Niel et al. (2017), and the Rigid-Rigid case are 

adopted for perfectly heat conducting but 

electrically non-conductive. 

A two-dimensional, steady, laminar and 

again incompressible magneto nanofluid flow and 

heat transfer are herein considered within the 

modelled confinement. The following 

thermophysical properties of the nanofluid system 

such as viscosity, thermal conductivity, specific 

heat, magnetic permeability and electrical 

conductivity are assumed to be constant, particularly 

in the neighbourhood of the lower temperature T of 

the upper region of the system except for the 

momentum equations which is based on the 

Oberbeck-Boussinesq approximations. The 

nanoparticles and the liquid metals are in thermal 

equilibrium locally; viscous dissipation and 

radiative heat transfer are negligible; the mixture is 

diluted; the reactions are non-chemical and laminar 

flow occurs at the onset of convection. The 

dimensionless conservation equation of continuity, 

momentum, energy, as well as nanoparticles volume 

fraction and modified maxwell equations are formed 

from the dimension equations (2.1) to (2.6) and 

presented below as follows: 
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The above equations are transformed to 

dimensionless using the following non-

dimensionless dependent and independent variables: 

(r, z) → (
r∗

h
,

z∗

h
), u  → (u  r , u  z) → (u  r

∗, u  z
∗)

(ρc)lm h

km
, 

h∇→ ∇∗, t →
km

(ρc)lm h2 t∗, T →
 T∗−Tc 

 Th −Tc 
, ϕ →

 ϕ∗−ϕh  

 ϕc −ϕh  
, 

B   →  
1

B   0
 B   ∗; and these magneto nanofluids are 

characterized by the following dimensionless 

parameters: Da= Darcy number, is dimensionless 

permeability=  
μ k

μH2, Ra  = Thermal Rayleigh Number 

= 
ρ0gkH β

 μαm  
 Th − Tc , RM  = Density Rayleigh Number 

=
gkH

μαm
 ϕhρp + ρ0 1 − ϕh  , RN  = Nanoparticle 

Rayleigh Number = 
gkH

μαm
 ϕc − ϕh  ρp − ρ0 , Pr  = 

Prandtl number = 
μ

ρ0αm
 , PrM  = the magnetic Prandtl 

number =  
μ

ρ0η
, 𝐕𝐚 = Vadasz Number =  

𝛆𝐇𝟐𝐏𝐫

𝐤
 = 

𝛆𝐏𝐫

Da
 

Q = the modified magnetic Chandrasekhar number = 
μe k

 4πεμη  
B0

2, NA  = 
DT

Th DB ϕ0
 Th − Tc  the modified 

diffusivity ratios, Le = Lewis number = 
αm

 εDB  
 and NB  

= modified particle-density increment = 
ε(ρc)p ϕ0

(ρc)lm
, 

δ =
(ρc)m

(ρc)lm
 is the ratio of nanofluid's effective heat 

capacity to liquid metal's heat capacity and the 

MHD-nanofluidic thermo-physical parameters.  

The corresponding boundary conditions are 

associated with the dimensionless conservation 

equations: 

 

u  z =
∂u   z

∂z
= 0; T = 0; ϕ = 1; B   = e  z ; ∇   × B   = 0;

dϕbs

dz
+ NA

dTbs

dz
= 0 at z = 0 

                                                                                                                                                              (7)                                 

 

u  z =
∂u   z

∂z
= 0; T = 0; ϕ = 1; B   = e  z ; ∇   × B   = 0;

dϕbs

dz
+ NA

dTbs

dz
= 0 at z = 1 

 

 

III. STABILITY ANALYSIS OF THE SYSTEM (11 BOLD) 
The basic state of the nanofluidic system can analytically be described as follows: 

𝑢  𝑥𝑏𝑠 = 𝑢  𝑧𝑏𝑠 = 0; 𝐵  = 𝐵  𝑏𝑠𝑒𝑍; 𝑇𝑏𝑠 = 𝑇𝑏𝑠 (𝑧); 𝑃𝑏𝑠 = 𝑃𝑏𝑠 (𝑧); 𝜙𝑏𝑠 = 𝜙𝑏𝑠 (𝑧).              (7) 

 

The basic steady state for equations (7) to (12) is denoted by subscript ―bs‖. In the analytic investigation, the 

time-independence solution only seeks temperature, nanoparticle volume fraction, and magnetic inductance in 

the z-direction. Then, Equations (1) – (6) therefore reduces to: 

 
𝜕𝑃𝑏𝑠

𝜕𝑧
= 𝑅𝑀  +  𝑅𝑎𝑇 − 𝑅𝑁𝜙 𝑒𝑧 +

𝜀𝑃𝑟𝑄𝐵  0
2

𝑃𝑟𝑀
                                                                           (8) 

𝑑2𝑇𝑏𝑠

𝑑𝑧2 +
𝑁𝐵

𝐿𝑒
 
𝑑𝜙𝑏𝑠

𝑑𝑧
  

𝑑𝑇𝑏𝑠

𝑑𝑧
 +

𝑁𝐴𝑁𝐵

𝐿𝑒
 
𝑑𝑇𝑏𝑠

𝑑𝑧
 

2

= 0                                                                 (9) 

 
𝑑2𝜙𝑏𝑠

𝑑𝑧2  + 𝑁𝐴  
𝑑2𝑇𝑏𝑠

𝑑𝑧2  = 0                                                                                                  (10) 

𝑑𝐵  𝑧

𝑑𝑧
= 0                                                                                                                                   (11) 

The basic solutions 𝑇𝑏𝑠  𝑧 = 1 − 𝑧 and 𝜙𝑏𝑠 (𝑧) = 𝑧 linear copper nanoparticles in 𝑧 are in the spirit of (Yadav et 

al., 2013). 
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Linear Perturbation Equations: 

The basic solution state can be  superimposed with infinitesimal perturbations fields, such that: 𝐵  = 𝐵  𝑏𝑠 (𝑧) +

 𝐵  ′; 𝑢  = 𝑢  𝑏𝑠 (𝑧) + 𝑢  ′; 𝑇 = 𝑇𝑏𝑠 (𝑧) +  𝑇 ′; 𝜙 = 𝜙𝑏𝑠(𝑧) + 𝜙 ′; and 𝑃 = 𝑃𝑏𝑠 𝑧 + 𝑃′                                                                                                                         

(12) 

𝐵  ′, 𝑢  ′, 𝑇 ′, 𝜙 ′, and 𝑃′ are the perturbed quantities over their respective equilibrium counterparts are functions of 

𝑟, 𝑧, and 𝑡. Equations (2.1) to (2.6) are linearized by neglecting products of the primed quantities concerning the 

perturbations as well as taking 𝑢  𝑏𝑠 = 0 and 𝐵  𝑏𝑠 = 𝑒 𝑧  gives 

𝛻  . 𝑢  ′ =
𝜕𝑢   𝑧

′

𝜕𝑧
= 0                                                                                                                                 (13) 

1

𝑉𝑎
 

1

𝛿
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𝜕𝑡
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𝜕𝑃

𝜕𝑧
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′
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𝜀𝑃𝑟𝑄

𝑃𝑟𝑀
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                            (14) 
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𝜀
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=
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𝛻  . 𝐵  ′ = 0                                                                                                                                            (18) 

 

Performing Operation on Eq. (14) twice 

with curl operator,𝑒 𝑧 . 𝑐𝑢𝑟𝑙𝑐𝑢𝑟𝑙 and the 

identity,𝑐𝑢𝑟𝑙𝑐𝑢𝑟𝑙 ≡ 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 − 𝛻2, as well as 

using Eq. (13) and taking again only the z 

component of the resulting momentum and 

Maxwell’s equation, the pressure term  𝑃′ is 

eliminated from the momentum Equation (3.48). 

Therefore, reducing the unknowns to 𝐵  ′, 𝑢  ′, 𝑇 ′, and 

𝜙 ′ according to: 

 
1

𝑉𝑎
 

1

𝛿

𝜕𝛻   2𝑢   𝑧
′

𝜕𝑡
 = (𝐷𝑎

𝜕2

𝜕𝑧2 − 1)𝛻  2𝑢  𝑧
′ + 𝑅𝑎𝛻  2

2𝑇 ′ − 𝑅𝑁𝛻  2
2𝜙′ + 𝑄

𝜕

𝜕𝑧
(

𝜀𝑃𝑟

𝑃𝑟𝑀

𝜕2𝐵  ′

𝜕𝑧2 )                       (19) 

The perturbation quantities are assumed to be of the form: 

(𝜓′, 𝑇 ′, 𝐶 ′, 𝐵𝑧
′ ) = [𝜓 𝑧 , 𝜃 𝑧 , 𝐶 𝑧 , 𝐵 𝑧 ]  𝑒𝜆𝑛 𝑡𝐽𝑛 𝑎𝑟 𝑐𝑜𝑠(𝑛𝜑)                                           (20) 

By substituting equation (20) into the resulting equations (16) to (19), the linearized equations still in the 

dimensionless form are obtained as follows: 
𝜆𝑛

𝛿𝑉𝑎
 𝐷𝑛

2 − 𝛼2 𝛼𝜓 = 𝛼 𝐷𝑎  𝐷𝑛
2 − 𝛼2 − 1   𝐷𝑛

2 − 𝛼2 𝜓 − 𝑅𝑎𝛼
2𝜃 + 𝑅𝑁𝛼2𝐶 + 𝑄𝐷𝑛(

𝜀𝜆𝑛

𝛿
𝐵 + 𝛼𝐷𝑛𝜓)                                                                                                                           

(21) 

𝜆𝑛𝜃 + 𝛼𝜓 =  𝐷𝑛
2 − 𝛼2 𝜃 +

(1−2𝑁𝐴 )𝑁𝐵

𝐿𝑒
𝐷𝑛𝜃 +

𝑁𝐵

𝐿𝑒
𝐷𝑛𝐶                                                 (22) 

𝜀

𝛿
𝜆𝑛𝐶 − 𝛼𝜓 =

1

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝐶 +
𝑁𝐴

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝜃                                                           (23) 

𝜀

𝛿
𝜆𝑛𝐵 + 𝛼𝐷𝜓 =

𝜀𝑃𝑟

𝑃𝑟𝑀
 𝐷𝑛

2 − 𝛼2 𝐵                                                                                     (24) 

 

In equations (21) to (24) 𝐷𝑛 =
𝜕

𝜕𝑧
. 𝐷𝜓 =

𝜓 = 𝜃 = 𝐶 = 𝐷𝑛𝐵 = 0 at 𝑧 = 0,1 for normal mode 

analysis is the first boundary condition for the above 

equation. The equation is an eigenvalue problem 

expression which is the same algebraically in form 

as found by (Wakif et al., 2017; Wakif et al., 2016; 

Barletta et al. 2013) studied a very short porous 

channel. This radially symmetric porous cylindrical 

media with aspect ratio A is endowed with a discrete 

spectrum. The principle of exchange of stability is 

assumedly valid for this investigation. For the 

investigation of stationary mode, the growth rate 𝜆𝑛  

for each disturbance, 𝜆𝑛 = 0,  consequently the 

equations (21) to (24) becomes 

 
 −𝐷𝑎𝐷𝑛

4 + (2𝛼2𝐷𝑎 + 𝑄 + 1)𝐷𝑛
2 − 𝛼2(𝐷𝑎𝛼

2 + 1) 𝜓 + 𝑅𝑁𝛼𝐶 = 𝑅𝑎𝛼𝜃                       (25) 

𝛼𝜓 −  𝐷𝑛
2 +

(1−2𝑁𝐴 )𝑁𝐵

𝐿𝑒
𝐷𝑛 − 𝛼2 𝜃 +

𝑁𝐵

𝐿𝑒
𝐷𝑛𝐶 = 0                                                           (26) 

𝛼𝜓 +
1

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝐶 +
𝑁𝐴

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝜃 = 0                                                                        (27) 

The simplified system of equations (25), (26), and (27) are solved within the following boundary conditions: 

𝐷𝜓 = 𝜓 = 𝜃 = 𝐶 = 𝐷𝑛𝐵 = 0 at 𝑧 = 0,1.                                                                         (28) 
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Computational Procedure: 

The eigenvalue equations obtained above 

are solved numerically for the rigid-rigid magneto 

nanofluid boundaries case for different values of 𝑁𝐴 , 

𝑁𝐵 , 𝑅𝑁 , 𝐿𝑒, 𝐷𝑎, 𝑄 using the Chebyshev-Tau 

spectral method to find the critical Rayleigh number 

𝑅𝑎𝑐  as a function of critical wave number 𝑎𝑐 . To 

solve the normal mode model by the Chebyshev-

Tau method together with the boundary conditions 

(28) concerning the domain 𝑧 ∈ (−1,1) and then 𝜓, 

𝜃, 𝐶 is written as a series of Chebyshev 

polynomials.  

This method requires the solution of matrix 

equations (29) or (30) below with the boundary 

conditions (28) for the domain 𝑧 ∈ (−1,1), and then 

𝜓, 𝜃, 𝐶 is written as a series of Chebyshev 

polynomials. 

𝐴𝑧 = 𝜎𝐵𝑧                                                                                                                             (29) 

 

𝐴11

𝐴21

𝐴31

𝐴12

𝐴22

𝐴32

𝐴13

𝐴23

𝐴33

  
𝜓
𝜃
𝐶

 = 𝑅𝑎  

𝐵11

𝐵21

𝐵31

𝐵12

𝐵22

𝐵32

𝐵13

𝐵23

𝐵33

  
𝜓
𝜃
𝐶

                                                                (30) 

The system of equations (2.25), (2.26), and (2.27) is an eigenvalue problem of 𝑅𝑎 , for fixed. Let 𝑅𝑎𝑐  be the least 

positive eigenvalue of the system where Linear stability occurs if 𝑅𝑎 < 𝑅𝑎𝑐  and linear instability if 𝑅𝑎 > 𝑅𝑎𝑐 . 

We therefore have 

 −𝐷𝑎𝐷𝑛
4 + (2𝛼2𝐷𝑎 + 𝑄 + 1)𝐷𝑛

2 − 𝛼2(𝐷𝑎𝛼
2 + 1) 𝜓 + 𝑅𝑁𝛼𝐶 = 𝑅𝑎𝛼𝜃                             (a) 

𝛼𝜓 −  𝐷𝑛
2 +

(1−2𝑁𝐴 )𝑁𝐵

𝐿𝑒
𝐷𝑛 − 𝛼2 𝜃 +

𝑁𝐵

𝐿𝑒
𝐷𝑛𝐶 = 0                                                                 (b) 

𝛼𝜓 +
𝑁𝐴

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝜃 +
1

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝐶 = 0                                                                             (c) 

(31a-c) 

The conditions at 𝑧 = −1,1 are known as clamped boundary conditions. The 𝐷2 Chebyshev-tau method is 

applied to resolve the eigenvalue problem by writing the system of equations thus: 

𝐿1(𝜓, 𝐶, 𝜃)𝑇 =  −𝐷𝑎𝐷𝑛
4 + (2𝛼2𝐷𝑎 + 𝑄 + 1)𝐷𝑛

2 − 𝛼2(𝐷𝑎𝛼
2 + 1) 𝜓 + 𝑅𝑁𝛼𝐶 − 𝑅𝑎𝛼𝜃 = 0  (a)                        

𝐿2(𝜓, 𝐶, 𝜃)𝑇 = 𝛼𝜓 −  𝐷𝑛
2 +

(1−2𝑁𝐴 )𝑁𝐵

𝐿𝑒
𝐷𝑛 − 𝛼2 𝜃 +

𝑁𝐵

𝐿𝑒
𝐷𝑛𝐶 = 0                                         (b) 

L3(𝜓, 𝐶, 𝜃)𝑇 = 𝛼𝜓 +
1

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝐶 +
𝑁𝐴

𝐿𝑒
 𝐷𝑛

2 − 𝛼2 𝜃 = 0                                                    (c)                                      

(32a-c) 

The system (3.31) is transformed from (0,1), the natural domain, into the spatial domain (−1,1) as finite 

truncated series of Chebyshev polynomials: 

𝜓 =  𝜓𝑖𝑇𝑖(𝑧)𝑁+2
𝑖=0                                                                                                                 (a) 

𝐶 =  𝑐𝑖𝑇𝑖(𝑧)𝑁+2
𝑖=0                                                                                                                   (b) 

𝜃 =  𝜃𝑖𝑇𝑖(𝑧)𝑁+2
𝑖=0                                                                                                                   (c) 

(33a-c) 

Meanwhile, the exact solution to (3.78) is an infinite series, 𝑁 → ∞.  

𝜓𝑖 = 𝑐𝑖 = 𝜃𝑖 = 𝑐𝑜𝑠⁡(𝑖𝑐𝑜𝑠−1 𝑧 ), 𝑖 = 1,2,3 … .                                                                 (34) 

The Chebyshev tau assertion of equation (34) is solved with the approximate form (35) because of the truncation 

by using 

𝐿1(𝜓, 𝐶, 𝜃)𝑇 = 𝜏11𝑇𝑁+1 + 𝜏12𝑇𝑁+2                                                                                         (a) 

𝐿2(𝜓, 𝐶, 𝜃)𝑇 = 𝜏21𝑇𝑁+1 + 𝜏22𝑇𝑁+2                                                                                         (b) 

𝐿3(𝜓, 𝐶, 𝜃)𝑇 = 𝜏31𝑇𝑁+1 + 𝜏32𝑇𝑁+2                                                                                         (c) 

(35a-c) 

 

In (35) above, the parameters 𝜏11 , …, 𝜏32  are the tau coefficients while 𝐿1, 𝐿1, 𝐿3 are the differential 

operator. According to Lanczos's technic and Fox error analysis, the tau coefficient parameters are effectively 

used to measure or indicate the error associated with truncation in (34). (Straughan et al., 1996)  

The Chebyshev scheme above is applied to the system of equations (30), and (31) to solving (29) were now  

𝑧 = (𝜓𝑜 , … , 𝜓𝑁+2 , 𝑐𝑜 , … , 𝑐𝑁+2, 𝜃𝑜 , … , 𝜃𝑁+2)𝑇                                                                                    (36) 

And the matrices 𝐴 and 𝐵 are given by 

 

𝐴 =

 

 
 

−𝐷𝑎𝐷𝑛
4 + (2𝛼2𝐼𝐷𝑎 + 𝑄 + 1)𝐷𝑛

2 − 𝛼2𝐼(𝐷𝑎𝛼
2 + 1) 0 𝑅NαI

αI −  Dn
2 +

(1−2NA )NB

Le
Dn − α2I 

NB

Le
Dn

αI
NA

Le
 Dn

2 − α2I 
1

Le
 Dn

2 − α2I 
 

 
 

(37) 
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B =  
0 aI 0
0 0 0
0 0 0

                                                                                                                                       (38) 

 

To confirm the accuracy of the present 

study, first test computations are carried out for the 

stationary instability threshold of the magneto 

nanofluids for different values of NA  and  Q in the 

case where: ε = 0.9, Da = 0.5, Le = 100, RN = 0.1 

and NA = 1 within the rigid-rigid boundary. The 

critical Rayleigh number Rac  and the corresponding 

critical wavenumber ac  for different values of 

magnetic Chandrasekhar, number Q are obtained, 

and comparisons were made with present results and 

that given by Wakif et al. (2016) for electrically 

conducting nanofluids in Table 1. TAs a result, there 

is an excellent agreement, as shown in the graphical 

representation using Python seaborn pair-plot and 

line-plot in Figure 2. The resultant figures thus 

validate the accuracy of the method applied and 

ensure the present results' correctness. 

 

Table 1: The numerical values of critical values of Rayleigh number and corresponding wave number obtained 

for the present work compared with Wakif et al. (2016) where ϵ = 0.9, NA = 1, Le = 100, Da = 0.5, RN = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rigid - Rigid case (N=55) 

NB  Q ac  

Present 

study 

Wakif et al. 

(2016) 

Relative 

Difference 

Rac  Rac  % 

10−4 

0 3.1239 887.0990 887.0988  2.0 × 10
--5 

5 3.2672 1005.6500 1005.6524 -2.0 × 10
--4

 

15 3.4935 1226.8400 1226.8423 -1.9 × 10
--4

 

35 3.8167 1630.2800 1630.2779  1.3 × 10
--5

 

75 4.2379 2356.3000 2356.3024 -1.0 × 10
—5

 

100 4.4285 2779.3800 2779.3810 -4.0 × 10
—5

 

10−3 

0 3.1239 887.0990 887.0988  2.0 × 10
—5

 

5 3.2672 1005.6500 1005.6524 -2.0 × 10
--4

 

15 3.4935 1226.8400 1226.8423 -1.9 × 10
--4

 

35 3.8167 1630.2800 1630.2779  1.3 × 10
--5

 

75 4.2379 2356.3000 2356.3024  -1.0 × 10
--4

 

100 4.4285 2779.3800 2779.3810 -4.0 × 10
--5

 

10−2 

0 3.1239 887.0990 887.0988  2.0 × 10
--5

 

5 3.2672 1005.6500 1005.6524  -2.0 × 10
--4

 

15 3.4935 1226.8400 1226.8423  -1.9 × 10
--4

 

35 3.8167 1630.2800 1630.2779   1.3 × 10
--4

 

75 4.2379 2356.3000 2356.3024   -1.0 × 10
—5

 

100 4.4285 2779.3800 2779.3810   -4.0 × 10
—5
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Figure 2.: A plot showing the validation of the presented results with Wakif et al. (2016) in the case of 

electrically conducting fluid for different values of the magnetic Chandrasekhar number Q 

 

 

SOURCE CODE for THE Numerical experiments: 

ClearAll["Global`*"]; 

Np=55;Da=0.5;Q=0.0;α=3.1440;Na=1.5;Nb=0.02;Le=14450.50;Rn=0.1;ϵ=0.9; 

 

ψ= ; 

τ= ; 

ϕ= ; 

B11=(ψ/.z->0)==0; 

B12=( /.z->0)==0; 

B13=(ψ/.z->1)==0; 

B14=( /.z->1)==0; 

B21=(τ/.z->0)==0; 

B22=(τ/.z->1)==0; 

B31=(ϕ/.z->0)==0; 

B32=(ϕ/.z->1)==0; 

B2=Join[{B11,B12,B13,B14,B21,B22,B31,B32}]; 

 

var1=Table[ak,{k,0,3}]; 

var2=Table[bk,{k,0,1}]; 

var3=Table[dk,{k,0,1}]; 

 

B3=Join[{var1,var2,var3}]//Flatten; 

sol1=NSolve[B2,B3]//Flatten; 

 

ψ1=ψ/.sol1;τ1=τ/.sol1;ϕ1=ϕ/.sol1; 

 

nodes=N[Table[(1/2*(1-Cos[(i*π)/Np])),{i,0,Np}]]; 

 

R11=Da* -(2α
2
 Da+Q+1) +α

2
 (1+Da*α

2
)ψ1+Rn*α

2
*ϕ1; 

R12=ψ1+( +((1-2*Na)Nb)/Le -α
2
*τ1)-Nb/Le ; 

R13=ϵ-1*ψ1-Na/Le ( -α
2
*τ1)-1/Le ( -α

2
*ϕ1); 

k 0

Np

ak ChebyshevT k, 2 z 1

k 0

Np

bk ChebyshevT k, 2 z 1

k 0

Np

dk ChebyshevT k, 2 z 1

z

z

z,4 1 z,2 1

z,2 1 z,1 1 z,1 1

z,2 1 z,2 1
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R21=Ra*α
2
*τ1; 

R22=0; 

R23=0; 

 

A11=Thread[(Table[R11/.z->nodes[[i]],{i,2,Np-2}])]//Flatten; 

A12=Thread[(Table[R12/.z->nodes[[i]],{i,2,Np}])]//Flatten; 

A13=Thread[(Table[R13/.z->nodes[[i]],{i,2,Np}])]//Flatten; 

A1=Join[A11,A12,A13]; 

A21=Thread[(Table[R21/.Ra->1/.z->nodes[[i]],{i,2,Np-2}])]//Flatten; 

A22=Thread[(Table[R22/.z->nodes[[i]],{i,2,Np}])]//Flatten; 

A23=Thread[(Table[R23/.z->nodes[[i]],{i,2,Np}])]//Flatten; 

A2=Join[A21,A22,A23]; 

 

 

var1=Table[ak,{k,4,Np}]; 

var2=Table[bk,{k,2,Np}]; 

var3=Table[dk,{k,2,Np}]; 

var=Join[var1,var2,var3]//Flatten; 

 

A3=CoefficientArrays[A1,var][[2]]//Normal; 

A4=CoefficientArrays[A2,var][[2]]//Normal; 

 

Reverse[Eigenvalues[{A3,A4}]] 

 

IV. OBSERVATIONS FROM THE 

NUMERICALABORATORY 
The effects of anexternal magnetic field on 

the criteria of the onset of thermal 

convection/stabilization in Cu-Ga or Cu/Dia-Ga 

Nanofluid in Darcy, Darcy-Brinkman porous 

medium investigated for different nanoparticle 

distribution, top- and bottom-heavy case.The 

stability equation established in the numeric 

experiments reveals or shows how the thermal 

stability of the Nanofluid system depends on Q, NB, 

RN, NA and DA. The Lewis number serves as a 

distinguishing factor for the Nanofluid system, Le 

(Cu-Ga) is 8000, and that of Cu/Dia-Ga is14450. 

The variation of the critical stability parameters Rac 

as a function of different values of the control 

parameters NB, RN, Le, NA or DA are plotted 

graphically to visualize their effects. 

 

 

 
Figure 4: Results of the modified magnetic Chandrasekhar number 𝐐  effects on the critical Rayleigh 

number 𝐑𝐚𝐜 for different values of modified diffusivity ratio 𝐍𝐀 for Cu-Ga and Cu/Diamond-Ga, top-

heavy and bottom-heavy cases 
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Case 

Nanofluid 

Base Fluid Da Q Rac 

Top Cu-Ga 0.1 0 -673.91 

Top Cu-Ga 0.1 5 -569.68 

Top Cu-Ga 0.1 15 -360.37 

Top Cu-Ga 0.1 35 -8.36814 

Top Cu-Ga 0.1 75 617.74 

Top Cu-Ga 0.1 100 984.02 

Top Cu-Ga 0.1 200 2531.21 

Top Cu-Ga 0.2 0 -503.04 

Top Cu-Ga 0.2 5 -387.65 

Top Cu-Ga 0.2 15 -179.71 

Top Cu-Ga 0.2 35 189.26 

Top Cu-Ga 0.2 75 845.82 

Top Cu-Ga 0.2 100 1228.79 

Top Cu-Ga 0.2 200 2805.1 

Top Cu-Ga 0.3 0 -332.23 

Top Cu-Ga 0.3 5 -215.56 

Top Cu-Ga 0.3 15 -2.4453 

Top Cu-Ga 0.3 35 379.53 

Top Cu-Ga 0.3 75 1061.49 

Top Cu-Ga 0.3 100 1458.89 

Top Cu-Ga 0.3 200 3056.06 

Top Cu-Ga 0.4 0 -161.43 

Top Cu-Ga 0.4 5 -43.76 

Top Cu-Ga 0.4 15 173.61 

Top Cu-Ga 0.4 35 566.81 

Top Cu-Ga 0.4 75 1271.59 

Top Cu-Ga 0.4 100 1682.22 

Top Cu-Ga 0.4 200 3295.85 

Top Cu-Ga 0.5 0 9.3736 

Top Cu-Ga 0.5 5 127.93 

Top Cu-Ga 0.5 15 349.12 

Top Cu-Ga 0.5 35 752.56 

Top Cu-Ga 0.5 75 1478.53 

Top Cu-Ga 0.5 100 1901.67 

Top Cu-Ga 0.5 200 3528.9 

Top Cu/Dia-Ga 0.1 0 1149.81 

Top Cu/Dia-Ga 0.1 5 -1277.47 

Top Cu/Dia-Ga 0.1 15 -1077.16 

Top Cu/Dia-Ga 0.1 35 -725.16 

Top Cu/Dia-Ga 0.1 75 -99.05 

Top Cu/Dia-Ga 0.1 100 267.23 
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Top Cu/Dia-Ga 0.1 200 1814.43 

Top Cu/Dia-Ga 0.2 0 -1219.83 

Top Cu/Dia-Ga 0.2 5 -1104.43 

Top Cu/Dia-Ga 0.2 15 -896.49 

Top Cu/Dia-Ga 0.2 35 -527.53 

Top Cu/Dia-Ga 0.2 75 129.03 

Top Cu/Dia-Ga 0.2 100 512 

Top Cu/Dia-Ga 0.2 200 2088.25 

Top Cu/Dia-Ga 0.3 0 -1049.01 

Top Cu/Dia-Ga 0.3 5 -932.34 

Top Cu/Dia-Ga 0.3 15 -719.23 

Top Cu/Dia-Ga 0.3 35 -337.26 

Top Cu/Dia-Ga 0.3 75 334.7 

Top Cu/Dia-Ga 0.3 100 742.11 

Top Cu/Dia-Ga 0.3 200 2339.27 

Top Cu/Dia-Ga 0.4 0 -878.2 

Top Cu/Dia-Ga 0.4 5 -760.54 

Top Cu/Dia-Ga 0.4 15 -543.16 

Top Cu/Dia-Ga 0.4 35 -149.97 

Top Cu/Dia-Ga 0.4 75 554.82 

Top Cu/Dia-Ga 0.4 100 965.45 

Top Cu/Dia-Ga 0.4 200 2579.07 

Top Cu/Dia-Ga 0.5 0 -707.4 

Top Cu/Dia-Ga 0.5 5 -588.85 

Top Cu/Dia-Ga 0.5 15 -367.65 

Top Cu/Dia-Ga 0.5 35 35.79 

Top Cu/Dia-Ga 0.5 75 761.82 

Top Cu/Dia-Ga 0.5 100 1184.9 

Top Cu/Dia-Ga 0.5 200 2812.1 

Bottom Cu-Ga 0.1 0 1103.87 

Bottom Cu-Ga 0.1 5 1217.1 

Bottom Cu-Ga 0.1 15 1417.41 

Bottom Cu-Ga 0.1 35 1769.41 

Bottom Cu-Ga 0.1 75 2395.51 

Bottom Cu-Ga 0.1 100 2761.8 

Bottom Cu-Ga 0.1 200 4308.96 

Bottom Cu-Ga 0.2 0 1274.73 

Bottom Cu-Ga 0.2 5 1390.13 

Bottom Cu-Ga 0.2 15 1598.07 

Bottom Cu-Ga 0.2 35 1967.64 

Bottom Cu-Ga 0.2 75 2623.6 

Bottom Cu-Ga 0.2 100 3006.58 

Bottom Cu-Ga 0.2 200 4582.88 
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Bottom Cu-Ga 0.3 0 1445.56 

Bottom Cu-Ga 0.3 5 1562.22 

Bottom Cu-Ga 0.3 15 1775.33 

Bottom Cu-Ga 0.3 35 2157.3 

Bottom Cu-Ga 0.3 75 2839.26 

Bottom Cu-Ga 0.3 100 3236.67 

Bottom Cu-Ga 0.3 200 4833.83 

Bottom Cu-Ga 0.4 0 1616.36 

Bottom Cu-Ga 0.4 5 1734.03 

Bottom Cu-Ga 0.4 15 1951.4 

Bottom Cu-Ga 0.4 35 2344.59 

Bottom Cu-Ga 0.4 75 3049.38 

Bottom Cu-Ga 0.4 100 3460 

Bottom Cu-Ga 0.4 200 5073.64 

Bottom Cu-Ga 0.5 0 1787.17 

Bottom Cu-Ga 0.5 5 1905.72 

Bottom Cu-Ga 0.5 15 2126.91 

Bottom Cu-Ga 0.5 35 2530.35 

Bottom Cu-Ga 0.5 75 3256.39 

Bottom Cu-Ga 0.5 100 3679.48 

Bottom Cu-Ga 0.5 200 5306.71 

Bottom Cu/Dia-Ga 0.1 0 1820.53 

Bottom Cu/Dia-Ga 0.1 5 1933.76 

Bottom Cu/Dia-Ga 0.1 15 2134.07 

Bottom Cu/Dia-Ga 0.1 35 2486.06 

Bottom Cu/Dia-Ga 0.1 75 3112.17 

Bottom Cu/Dia-Ga 0.1 100 3478.46 

Bottom Cu/Dia-Ga 0.1 200 5025.67 

Bottom Cu/Dia-Ga 0.2 0 1991.39 

Bottom Cu/Dia-Ga 0.2 5 2106.79 

Bottom Cu/Dia-Ga 0.2 15 2314.73 

Bottom Cu/Dia-Ga 0.2 35 2683.69 

Bottom Cu/Dia-Ga 0.2 75 3340.25 

Bottom Cu/Dia-Ga 0.2 100 3723.23 

Bottom Cu/Dia-Ga 0.2 200 5299.54 

Bottom Cu/Dia-Ga 0.3 0 2162.21 

Bottom Cu/Dia-Ga 0.3 5 2278.87 

Bottom Cu/Dia-Ga 0.3 15 2491.98 

Bottom Cu/Dia-Ga 0.3 35 2873.96 

Bottom Cu/Dia-Ga 0.3 75 3555.91 

Bottom Cu/Dia-Ga 0.3 100 3953.32 

Bottom Cu/Dia-Ga 0.3 200 5550.51 

Bottom Cu/Dia-Ga 0.4 0 2332.99 
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Bottom Cu/Dia-Ga 0.4 5 2450.69 

Bottom Cu/Dia-Ga 0.4 15 2668.05 

Bottom Cu/Dia-Ga 0.4 35 3061.25 

Bottom Cu/Dia-Ga 0.4 75 3766.08 

Bottom Cu/Dia-Ga 0.4 100 4176.66 

Bottom Cu/Dia-Ga 0.4 200 5790.21 

Bottom Cu/Dia-Ga 0.5 0 2503.83 

Bottom Cu/Dia-Ga 0.5 5 2622.37 

Bottom Cu/Dia-Ga 0.5 15 2843.57 

Bottom Cu/Dia-Ga 0.5 35 3246.98 

Bottom Cu/Dia-Ga 0.5 75 3973.03 

Bottom Cu/Dia-Ga 0.5 100 4396.11 

Bottom Cu/Dia-Ga 0.5 200 6023.34 

 

V. CONCLUSION 
The numerical solutions of the 

stabilization of magneto liquid-metal, Cu-Ga and 

Cu/Dia-Ga nanofluids concerning the modified 

Lewis number are investigated. The calculated 

solutions are validated by trend comparison with 

previously published results. The following 

findings can be summarized and concluded as 

follows: 

•The Chebyshev spectral technique greatly and 

accurately forecasts the existent control of critical 

thermal stability parameters on the magneto 

nanofluid behaviour compared with other models 

and accurately replicates some of the experimental 

details approximately at 10
-5

; 

•The thermo-hydromagnetic stability of the liquid-

metal-based (Copper-Gallium nanofluid and 

Copper/Diamond-Gallium) and the water-based 

nanofluids (Copper-water) cases. It is 

computationally discovered that Cu/Dia-Ga 

nanofluid is 80% more stable than the Cu-Water 

counterparts; 

•The liquid-metal-based magneto nanofluids, 

Cu/Dia-Ga are more stable and less complex in 

geometry, particularly the bottom-heavy 

nanoparticle Distribution; 

• Increase in porosity ε and the Darcy number also 

show an increase in the critical Rayleigh number 

Rac  signifying stability of the system; 

• The effect of the increase in the modified 

magnetic Chandrasekhar number Q with regards to 

the Darcy number Da shows pull back at the onset 

of convection for both nanoparticle dispersals; 

•The onset of convection is accelerated for the top-

heavy dispersals of nanoparticles as the 

nanoparticle Rayleigh number RN  increases 

•The effects of the modified specific heat increment 

NB  on the Copper-Gallium andCopper/Diamond-

Gallium magneto nanofluid is relatively 

insignificant in the device. 
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