On Certain Classes of Meromorphic Functions

V. Srinivas¹, S. Lalitha², K.V. Sitavani³

¹Dr. B.R. Ambedkar Open University, Hyderabad, Telangana ²Geethanjali College of Engineering and Technology, Hyderabad, Telangana ³Research Scholar, JNTUKakinada, Andhra Pradesh Corresponding Author: S. Lalitha

Submitted: 10-08-2022 Revised: 17-08-2022 Accepted: 20-08-2022

ABSTRACT:

A meromorphic function with a simple pole at z=0 and of the form $f(z)=\frac{1}{z}+\sum_{n=0}^{\infty}a_nz^n$ for $z\in D\equiv\{z\in\mathbb{C}\colon 0<|z|<1\}$ with $f(z)\neq 0$ in D can be expressed as $f(z)=\frac{1}{zg(z)}$ where $g(z)=1+\sum_{n=1}^{\infty}b_nz^n$ in D. In this paper certain coefficient criteria are derived for some classes of meromorphic functions.

KEYWORDS:Meromorphic function, univalent starlike function.

INTRODUCTION

Let \widetilde{M} denote the class of functions which are analytic in D = D(1) where

$$D(r) = \{z \in \mathbb{C}: \ 0 < |z| < r \} \ \text{for} \ r > 0$$
, with a simple pole at the point $z = 0$ and \mathbb{C} being the set of complex numbers. By M , we denote the

class of functions
$$f \in \widetilde{M}$$
 of the form $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n (z \in D)$ (1)

Also, by $\tau_{\eta}^{\varepsilon}$ ($\eta \in R$, $\varepsilon \in \{0,1\}$), we denote the class of functions $f \in M$ of the form (1) for which

 $\arg(a_n) = \varepsilon \pi - (n+1)\eta \quad (n \in N \equiv \{1,2,3,...\}).$ For $\eta = 0$, $\varepsilon = 0$ we obtain the class τ_0^0 of functions with positive coefficients.

Motivated by Silverman[3], Djiok[1] defined the class

$$\tau^{\varepsilon} \equiv \bigcup_{\eta \in \mathbf{R}} \tau^{\varepsilon}_{\eta} .$$

It is called the class of functions with varying coefficients.

Let $\alpha \in (0,1)$, $r \in (0,1)$. A function $f \in M$ is said to be meromorphically starlike of order α in D(r) if

Re
$$\left(\frac{zf'(z)}{f(z)}\right) < -\alpha \quad (z \in D(r)).(2)$$

Djiok[1] introduced the class of all functions in M, which are meromorphically starlike of order α and denoted it by $MS^*(\alpha)$.

We set $MS^* = MS^*(0)$.

For a function $f \in \tau_{\eta}^{0}$, the condition (2) is equivalent to

$$\left|\frac{zf'(z)}{f(z)} + 1\right| < 1 - \alpha \quad (z \in D(r)). \quad (3)$$

Let us define a new class $MS^*(A, B)$ which generalizes $S^*(\alpha)$:

A function $f \in M$ is said to be in the class $MS^*(A, B)$ if

$$-\frac{zf'(z)}{f(z)} < \frac{1+Az}{1+Bz}(z \in D(r)),$$

where $-1 \le B < A \le 1$ and " $\phi < \mu$ " means that $\phi(D) \subseteq \mu(D)$. We have

$$MS^*(1-2\alpha, -1) = MS^*(\alpha).$$

Kulkarni and Joshi[2] studied the class $\sum (\alpha, \beta, \gamma)$ of functions $f \in \Sigma$ satisfying the condition

$$\left| \frac{\frac{zf^{'}(z)}{f(z)} + 1}{2\gamma \left(\frac{zf^{'}(z)}{f(z)} + \alpha \right) - \left(\frac{zf^{'}(z)}{f(z)} + 1 \right)} \right| \le \beta(4)$$

for

$$(z \in D) \left(0 \le \alpha < 1; \ 0 < \beta \le 1; \ \frac{1}{2} < \gamma \le 1\right).$$

 Σ is the class of functions in \widetilde{M} which are univalent in D.

In this paper we find sufficient conditions in terms of b_n 's in Theorems-1, 2 and 3 for some subclasses of $MS^*(\alpha)$, $MS^*(A,B)$ and $\Sigma(\alpha,\beta,\gamma)$ respectively.

SECTION-1

In this section we find a sufficient condition in Theorem-1 for the subclass of $\tau_{\eta}^{0} \cap MS^{*}(\alpha)$.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 8 Aug. 2022, pp: 784-786 www.ijaem.net ISSN: 2395-5252

Theorem-1:

If $f(z) = \frac{1}{zg(z)} = \frac{1}{z(1 + \sum_{n=1}^{\infty} b_n z^n)} \in \tau_{\eta}^0$ for $D = \{z: 0 < |z| < 1\}$ with $f(z) \neq 0$ in D, $0 < \alpha < 1$ and $b_n \in \mathbb{C}$ for $n \in N$ satisfy $\sum_{n=1}^{\infty} [\{n + (1 - \alpha)\} |b_n|] < 1 - \alpha$ (5) then $f \in \tau_n^0 \cap MS^*(\alpha)$.

Proof:

Let $f(z) = \frac{1}{zg(z)}$ where $g(z) = \sum_{n=0}^{\infty} b_n z^n$ with $b_0 = 1$ and 0 < |z| < 1. We have

$$f'(z) = -\frac{g(z) + z g'(z)}{\{zg(z)\}^{2}}$$

$$\frac{zf'(z)}{f(z)} = -1 - \frac{zg(z)}{g(z)}$$

$$\left|\frac{zf'(z)}{f(z)} + 1\right| = \left|-\frac{z\sum_{n=1}^{\infty} nb_{n}z^{n-1}}{\sum_{n=0}^{\infty} b_{n}z^{n}}\right|$$

$$\leq \frac{\sum_{n=1}^{\infty} n|b_{n}|}{1 - \sum_{n=1}^{\infty} |b_{n}|}$$

by the given condition (3).

Now the inequality (5) gives the required conclusion of the theorem.

Next we find a sufficient condition in Theorem-2 for the subclass of $\tau_{\eta}^0 \cap MS^*(A, B)$.

Theorem-2:If $f(z) = \frac{1}{zg(z)} = \frac{1}{z(1 + \sum_{n=1}^{\infty} b_n z^n)} \in \tau_{\eta}^0$ for $D = \{ z: 0 < |z| < 1 \}$ with $f(z) \neq 0$ in D, $-1 \le B < A \le 1$ and $b_n \in \mathbb{C}$ for $n \in N$ satisfy $\sum_{n=1}^{\infty} [\{n+n|B|+(A-B)\}|b_n|] < A-B(6)$ then $f \in \tau_{\eta}^0 \cap MS^*(A, B)$.

Let $f(z) = \frac{1}{zg(z)}$ where $g(z) = \sum_{n=0}^{\infty} b_n z^n$ with $b_0 = 1$ and 0 < |z| < 1. We have

$$f'(z) = -\frac{g(z) + z g'(z)}{\{zg(z)\}^2}$$
$$-\frac{zf'(z)}{f(z)} = 1 + \frac{zg(z)}{g(z)}$$
$$= \frac{1 + Aw(z)}{1 + Bw(z)} \quad \text{say.}$$

We get

$$w(z) = -\frac{zg'(z)}{(B-A)g(z) + Bzg'(z)}$$
$$= \frac{-\sum_{n=1}^{\infty} n \, b_n z^n}{(B-A)\sum_{n=0}^{\infty} b_n z^n + B\sum_{n=1}^{\infty} n \, b_n z^n}$$

Hence

$$|w(z)| \le \frac{\sum_{n=1}^{\infty} n |b_n|}{|B - A| - \sum_{n=1}^{\infty} (A - B + n|B|)|b_n|}$$

Now, this and the given condition (6) give that $|w(z)| \leq 1$.

Further w(0) = 0. Thus

$$-\frac{zf(z)}{f(z)} < \frac{1+Az}{1+Bz}$$

 $-\frac{zf'(z)}{f(z)} < \frac{1+Az}{1+Bz}.$ Hence $f \in \tau_{\eta}^{0} \cap MS^{*}(A, B).$

Corollary: For $A = 1 - 2\alpha$, B = -1, Theorem-2 gives Theorem-1.

SECTION-2

Here we find a sufficient condition in Theorem 3 for the class $\sum (\alpha, \beta, \gamma)$

Theorem-3:

If $f(z) = \frac{1}{zg(z)} = \frac{1}{z(1 + \sum_{n=1}^{\infty} b_n z^n)}$ for $z \in D$ is in Σ and $f(z) \neq 0$ in D with $b_n \in \mathbb{C}$ for $n \in N$ and $\left(0 \le \alpha < 1; \ 0 < \beta \le 1; \ \frac{1}{2} < \gamma \le 1\right)$ satisfy $\sum_{n=1}^{\infty} \left[n \left(1 + \beta(2\gamma - 1) + 2\gamma\beta(1 - \alpha) \right) \right] |b_n|$ $< 2\beta\gamma(1-\alpha)$ (7) then $f \in \sum (\alpha, \beta, \gamma)$.

Let $f(z) = \frac{1}{zg(z)}$ where $g(z) = \sum_{n=0}^{\infty} b_n z^n$ for 0 < |z| < 1 with $b_0 = 1$. We have

$$-\frac{zf^{'}(z)}{f(z)} = 1 + \frac{zg^{'}(z)}{g(z)} \text{ for } z \in D.$$

$$\begin{split} & \left| \frac{\frac{zf^{'}(z)}{f(z)} + 1}{2\gamma \left(\frac{zf^{'}(z)}{f(z)} + \alpha \right) - \left(\frac{zf^{'}(z)}{f(z)} + 1 \right)} \right| \\ & = \left| \frac{-\frac{zg^{'}(z)}{g(z)}}{2\gamma \left(-1 - \frac{zg^{'}(z)}{g(z)} + \alpha \right) + \frac{zg^{'}(z)}{g(z)}} \right| \\ & = \left| \frac{zg^{'}(z)}{2\gamma [(\alpha - 1)g(z) - zg^{'}(z)] + zg^{'}(z)} \right| \\ & = \left| \frac{\sum_{n=1}^{\infty} nb_{n}z^{n}}{2\gamma [(\alpha - 1)\sum_{n=0}^{\infty} b_{n}z^{n} - \sum_{n=1}^{\infty} nb_{n}z^{n}] + \sum_{n=1}^{\infty} nb_{n}z^{n}} \right| \\ & = \frac{\sum_{n=1}^{\infty} n|b_{n}|}{|\sum_{n=0}^{\infty} [2\gamma \{(\alpha - 1) - n\} + n] b_{n}z^{n}|} \\ & \leq \frac{\sum_{n=1}^{\infty} n|b_{n}|}{2\gamma (1 - \alpha) - \sum_{n=1}^{\infty} |2\gamma \{(\alpha - 1) - n\} + n||b_{n}|} \end{split}$$

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 8 Aug. 2022, pp: 784-786 www.ijaem.net ISSN: 2395-5252

$$= \frac{\sum_{n=1}^{\infty} n |b_n|}{2\gamma(1-\alpha) - \sum_{n=1}^{\infty} \{2\gamma(1-\alpha) + n(2\gamma-1)\} |b_n|} \le \beta \quad \text{by (7)}$$
Thus (4) and (8) give that $f \in \Sigma(\alpha, \beta, \gamma)$.

REFERENCES

- [1]. Djiok. J; "Classes of Meromorphic functions defined by the Hadamard product", International Journal of Mathematics and Mathematical Sciences, Volume 2010, Article ID 302583, 11 pages.
- [2]. Kulkarni. S.R. and Joshi. S.S.; "On a subclass of Meromorphic univalent functions with positive coefficients", The Journal of the Indian Academy of Mathematics, Vol 24, No.1, pp. 197-205, 2002.
- [3]. Silverman. H; "Univalent functions with varying arguments", Houston Journal of Mathematics, Volume 7, No.2, pp. 283-287, 1981.