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ABSTRACT 

 A normalized function f analytic in the 

open unit disc around the origin and nonvanishing 

outside the origin can be expressed in the form z/f 

(z) where g (z) has Taylor coefficients bn’s. 

Necessary and sufficient conditions in terms of bn’s 

are derived for some classes of analytic functions. 

 

INTRODUCTION 
 Let A1 be the class of functionsf analytic 

in U =  z ∈ C;  z < 1 , and normalized by f(0)=0, 

f’(0)=1 where C is the set of complex numbers. An 

f in A1 with f z ≠ 0 in the punctured disc U/ 0 , 

may be expressed as f z = ψ g = z/g z  in U, 

 where g z = 1 +  bn zn∞
n=1  in U. 

 Mitrinovic [2], Reade et.al [3], Silverman 

and Silvia [6] and Srinivas [9] studied these 

coefficientsbn’s. 

 Mitrinovic [2] obtained estimates for the 

radii on univalence of certain rational functions. In 

particular, he found sufficient conditions for 

functions of the form 

 (1)  
z

1+a1+b2zh +....+bn zn
 

 bn ≠ 0, to be univalent in the unit disk U. 

 A function 

 (2)  f z = z +  an zn∞
n=2  

 in A1 is said to be starlike of order,  0 ≤

α ≤ 1,  if Re
zf′  z 

f z 
> α  in U. The set of all such 

functions is denoted by S∗ α . The functions in 

S∗ ≡ S∗ 0  are called starlike functions. 

Throughout this  researchpaper we let f be of the 

form (2). A function f (z) in A1 is said to be 

convex, if Re  1 +
zf″  z 

f′  z 
 > 0 in U. A function f z  

in A1 is said to be convex of order  

0 ≤ α ≤ 1, if Re  1 +
zf″ z

f′  z 
 > 0 in U. 

 A continuous passage from starlike 

functions to convex functions is the following class 

of functions α − convex in U. A function fin A1 is 

said to be α −convex in U, α ∈ C, if f z f ′ z /z ≠
0 and 

βA generalization of this class is the family of 

function f in A1 for which 

(3)  Re  μ
zf′

f z 
+ λ  1 +

zf″  z 

f′  z 
  > 0, 𝑧 ∈ U. 

Let us denote this class by CV λ, μ  

A function f ∈ A1 is said to be  spirallike in U, if 

Re  
1

cos λ
 eiλ zf′  z 

f z 
− i sin λ  > 0 , in U. These 

functions generaliz starlike functions and were 

studied by Spacek[8] 

 Silvia [7] introduced the following 

generalization of α − convex and λ − spirallike 

functions: A function f in A1 is said to be α − λ 

spiral of order β, a ≥ 0,  λ < π/2, λ  real, 0 ≤ β −
1, if f z f ′ z /z ≠ 0 for z ∈ U and 

 sec λ   eiλ − α 
zf′  z 

f′  z 
+ α  1 +

zf″  z 

f′  z 
  >

β.  

Rebertson [4] generalized the concept of convex 

functions of order α as follows: 

 A function f in a1 is said to be a λ − 

Rebertson function of order in the unit disc U. 

 In the note [3], Reade et.al., showed that 

the Mitrinovic criterion for univalence of functions 

of the form (1)  does not guarantee starlikeness and 

gave sufficient conditions for such functions to be 

(i) starlike of order α and (ii) convex, as n → ∞ 

 Functions f ∈ A1 are said to be in the class 

UCD α , α ≥ 0, if 

 Re f ′ z ≥ α zf ″  z  , z ∈ U 

 In [10] Thomas et. al. studied UCD α . In 

[5] the class T consisting of univalent functions f in 

A1 of the form 

(4) f z = z −  ak zk ,∞
k=2 ak ≥ 0, 

was investigated.  By TUCD α  we denote 

functions in UCD α  of the form (4). For this class, 

the following necessary and sufficient condition 

was derived in Thomas et al [10] : 

(5)  k 1 + α k − 1 ak ≤ 1 ∞
k=2 . 

 In this paper we derive conditions on bn
′ s 

necessary for f to be in TUCD α  and sufficient for 

f to be in the class CV λ, μ  in Sections 1 and 2 

respectively. These sufficient conditions generalize 

some earlier results for some known classes. 
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SECTION – 1 

Here we derive a necessary condition on the 

coefficients bn
′ s for the functions in TUCD α  : 

Theorem 1 : If 

 ψ g =
z

g z 
=

z

1+ bn zn∞
n =1

 in U and 

ψ g ∈  g ∈ TUCD α , 0 ≤ α < 1 

then 

(6) 0 ≤ bn ≤
1

 n+1  1+αn 
, n = 1,2, . . .. 

The second inequality is sharp for 

(7) gn z = 1 +   
1

 n+1  1+αn 
 

k
∞
k=1 znk  

in U and 

 ψ gn =
z

gn  z 
= z −

1

 n+1  1+αn 
zn+1 , z ∈

U. 

Prof : Since ψ g ∈ TUCD α  it has the Taylor 

series expansion 

 ψ g = z −  an zn , an ≥ 0, z ∈ U∞
n=2 , By 

the definition of g(z), 

(8) bn =  bkan−k+1
n−1
k=0  

for n ≥ 1 where b0 = 1. 

 First we show that  bn 1
∞ is a sequence of 

nonnegative real numbers. It follows from the 

equation (8) that b1 = a2 ≥ 0 . Now assume that 

bk ≥ 0 form 1 ≤ k ≤ n, for some n ∈ N, the set of 

natural numbers. Since, 

 bn+1 =  bkan+2−k
n
k=0  

and ak ’s are nonnegative, we have bn+1 ≥ 0. This 

proves by induction that bn+1 ≥ 0. This proves by 

induction that  bn 1
∞  is a sequence of nonnegative 

real numbers. 

 By the necessary and sufficient condition 

(5) for f to be in 𝑇𝑈𝐶𝐷 𝛼  : 

(9)  𝑛 1 + 𝛼 𝑛 − 1  ∞
𝑛=2 𝑎𝑛 ≤ 1. 

 We have 

 𝑏1 = 𝑎2 ≤
1

2 1+𝛼 
 

This proves the equality (6) for n = 1. 

Now, let the inequality (6) be true for n, satisfying 

1 ≤ 𝑛 ≤ 𝐾, for some 𝑘 ∈ 𝑁. Then, 

(10)

 𝑏𝑘+1 =  𝑏𝑛𝑎𝑘+2−𝑛
𝑘
𝑛=0 ≤

 
1

 𝑛+1  1+𝛼𝑛  
𝑎𝑘+2−𝑛

𝑘
𝑛=0 . 

 Set, for 𝑛 ≥ 2, 

 𝑎𝑛 = 𝜆𝑛
1

𝑛 1+𝛼 𝑛−1  
 

For 𝜓 𝑔 = 𝑧 −  𝑎𝑛𝑧𝑛∞
𝑛=2 ∈ 𝑇𝑈𝐶𝐷 𝛼  it is 

necessary, by (5) that  

  𝑛 1 + 𝛼 𝑛 − 1  𝑎𝑛 ≤ 1∞
𝑛=2  

Thus, 𝜆2 ≥ 0 for 𝑛 ≥ 2 and 

(11)  𝜆𝑛+1 ≤ 1𝑘+1
𝑛=1  

The inequality (10) is equivalent to 

 𝑏𝑘+1 ≤

 𝜆𝑘+2−𝑛
1

 𝑛+1  1+𝑛𝛼  
,

1

 𝑘+2−𝑛  1+ 𝑘−𝑛+1 𝛼 
𝑘
𝑛=0  

(12) ≤
1

 𝑘+2  1+ 𝑘+1 𝛼 
 𝜆𝑘+2−𝑛

𝑘
𝑛=0  

(13) ≤
1

 𝑘+2  1+ 𝑘+1 𝛼 
 

The inequality (12) holds since 

 𝑛 + 1  1 + 𝑛𝛼  𝑘 + 2 − 𝑛  1 +  𝑘 − 𝑛 + 1 𝛼 
≥ 2 𝑘 + 2  1 +  𝑘 + 1 𝛼  

⇔  1 + 𝛼𝑛  1 + 𝛼𝑘 − 𝛼𝑛  𝑘 + 1 − 𝑛 
+ 𝛼 𝑘 + 1  1 + 𝛼𝑘 

+ 𝛼2 𝑘 + 1 + 𝛼 1 + 𝛼 𝑘 + 1   
     

 ≥ 𝛼 𝑛 + 1  1 + 𝛼𝑛  

which is true for 0 ≥ 𝑛 ≤ 𝑘 and the inequality (13) 

holds due to (11). This proves the inequality (6) for 

𝑛 = 𝑘 + 1 and the proof of the theorem is complete 

by the induction argument. It is easily seen that 

sharpness of the second inequality in (6) is attained 

for the function 𝜓 𝑔𝑛  where 𝑔𝑛  is as in the 

equation (7). 

SECTION – 2 

Next we determine a sufficient condition on f in 

terms of bn’s for the functional 

 𝑅𝑒 𝜆 1 + 𝑧𝑓″  𝑧 /𝑓 ′  𝑧 + 𝜇𝑧𝑓 ′ 𝑧 /

𝑓𝑧 

to be positive in the unit disc U so that such f is in 

𝐶𝑉 𝜆, 𝜇  

Theorem 2 Let 𝑓 𝑧 = 𝑧/ 1 +  𝑏𝑛𝑧𝑛∞
𝑛=1  ∈ 𝐴1 

with 𝑏𝑛 ′𝑠 satisfying 

(14) : - 

  𝜆 +  2𝜆 + 𝜇 + 𝑅𝑒 𝜆 + 𝜇  𝑏1 

+    𝜆 +  2𝜆 + 𝜇 

∞

𝑛=2

+ 𝑅𝑒 𝜆 + 𝜇  𝑛 − 1  𝑏𝑛  

≤ 𝑅𝑒 𝜆 + 𝜇    

where 𝜆, 𝜇  are in C and at least one of them is 

nonzero, Then𝑓 ∈ 𝐶𝑉 𝜆, 𝜇  

 

Proof : For 𝑓 𝑧 = 𝑧/𝑔 𝑧  where 𝑔 𝑧 =
 1 +  𝑏𝑛𝑧𝑛∞

𝑛=1  , 𝑧 ∈ 𝑈, we have 

(15) 𝜆  1 +
𝑧𝑓″  𝑧 

𝑓 ′  𝑧 
 + 𝜇

𝑧𝑓 ′  𝑧 

𝑓 𝑧 
= 𝜆 +

𝜇
 2𝜆+𝜇  𝑛𝑏𝑛 𝑧𝑛∞

𝑛 =1

1+ 𝑏𝑛 𝑧𝑛∞
𝑛=1

+
𝜆  𝑛 𝑛−1 𝑏𝑛𝑧𝑛∞

𝑛=2

1+  1−𝑛 𝑏𝑛𝑧𝑛∞
𝑛=2

 

in the unit disc U. For 𝛼 =  2𝜆 + 𝜇 𝑅𝑒 𝜆 + 𝜇 /
  2𝜆 + 𝜇 +  𝜆  , we have, 

(16)  
 2𝜆+𝜇  𝑛𝑏𝑛 𝑧𝑛∞

𝑛 =1

1+ 𝑏𝑛 𝑧𝑛∞
𝑛=1

 ≤
 2𝜆+𝜇  𝑛 𝑏𝑛  ∞

𝑛 =1

1−  𝑏𝑛  ∞
𝑛=1

 

and 
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(17)  
𝜆  𝑛 𝑛−1 𝑏𝑛𝑧𝑛∞

𝑛 =2

1+  1−𝑛 𝑏𝑛𝑧𝑛∞
𝑛=2

 ≤
 𝜆  𝑛 𝑛−1  𝑏𝑛  ∞

𝑛=2

1−  𝑛−1  𝑏𝑛  ∞
𝑛=2

≤

𝑅𝑒 𝜆 + 𝜇 − 𝑎 
by the condition (14). By using the inequalities (16) 

and (17) in the equation (15), the inequality (3) in 

obtained, Hence𝑓 ∈ 𝐶𝑉 𝜆, 𝜇  

 

Corollary 1 : If 𝑓 𝑧 = 𝑧/ 1 +  𝑏𝑛𝑧𝑛∞
𝑛=1   is in 

A1 with the 𝑏𝑛
′  satisfying 

 1 +  𝜆 +  1 + 𝜆  𝑏1  

+   1

∞

𝑛=2

+  1 +  𝜆 +  1 + 𝜆  𝑛  𝑛
− 1  𝑏𝑛  ≤ 1 

For 𝜆 ∈ 𝐶, then f is 𝜆 −convex in U. 

 

Proof : By choosing 𝜇 = 1 − 𝜆, (14) becomes the 

required sufficient condition. 

Corollary 2 : (Reade et al. [3]) If 𝑓 𝑧 =
𝑧/ 1 +  𝑏𝑛𝑧𝑛∞

𝑛=1  , 𝑧 ∈ 𝑈 with the 𝑏𝑛
′  satisfying 

 4 𝑏1 +   𝑛 − 1  3𝑛 + 1  𝑏𝑛  ≤ 1∞
𝑛=2  

then f becomes convex in U. 

 

Proof : By taking 𝜆 = 1 and 𝜇 = 0 in Theorem 2, 

the corollary is obtained. 

Corollary 3 : If 𝑓 𝑧 = 𝑧/ 1 +  𝑏𝑛𝑧𝑛∞
𝑛=1  , 𝑧 ∈ 𝑈 

with the 𝑏𝑛 ′𝑠 satisfying 

 𝑐𝑜𝑠 𝜆 + 𝛼 +  𝑒𝑖𝜆 + 𝛼   𝑏1 

+    𝛼 +  𝑒𝑖𝜆 + 𝛼  𝑛

∞

𝑛=2

+ 𝑐𝑜𝑠 𝜆  𝑛 − 1  𝑏𝑏  ≤ 𝑐𝑜𝑠 𝜆 

For  𝜆 < 𝜋/2, 𝜆 ∈ 𝑅 , the set of real numbers, 

0 ≤ 𝛼 then f is 𝛼 − 𝜆 spiral of order o. 

Proof : Choosing 𝜆 = 𝛼, 𝑒𝑖𝜆 − 𝛼  in place of μ 

Theorem 2 gives the corollary. 

Corolary4 : (Ahuja and Jain [1]) If f z =
z/ 1 +  bnzn∞

n=1  , z ∈ U, −π/2 < β < π/2 

and 

 3 + cos β  b1 +   3n + cos β  n − 1  bn  

∞

n=2

≤ cos β 

then f is a β −Robertson function of order 0 in U. 

 

Proof : For μ = 0, λ = eiβ, −π/2 < β < π/2 . 

Theorem 2 gives the corollary. 
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