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ABSTRACT: Many important systems such as 

transportation systems and logistics/distribution 

systems that play important roles in our daily lives 

can be regarded as stochastic networks whose edges 

have independent, nonnegative and multi-valued 

random transmission times. Such a network is a 

multistate system with multistate components and so 

its reliability for level d, i.e., the probability that the 

shortest transmission time from a specified source 

node to another specified sink node is less than or 

equal to d, can be computed in terms of minimal 

path vectors to level d (named d-MPs here). The 

main objective of this paper is to present a simple 

and efficient method to generate all d-MPs of such a 

system for each level d in terms of minimal pathsets. 

Two examples are given to illustrate how all d-MPs 

are generated by our algorithm and then the 

reliability of one example is computed in terms of 

them by further applying the state space 

decomposition method. 
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I. INTRODUCTION 
Reliability analysis usually assumes that 

the system under study is represented by a stochastic 

graph in a two state model, and the system operates 

successfully if there exists at least one operative 

path from the source node to the sink node. In such 

a situation, reliability is considered as a matter of 

connectivity only and so it does not seem to be 

reasonable to reflect some real world systems. Many 

systems such as transportation systems and 

logistics/distribution systems that play important 

roles in our modem society may be regarded as 

stochastic networks whose transmission time of 

edges are independent, limited, and integer-valued 

random variables. For such a network, it is very 

practical and desirable to compute its reliability for 

level d, the probability that the shortest transmission 

time from the source node to the sink node is less 

than or equal to d. 

Virtually, reliability computation can be 

carried out in terms of minimal pathsets (MPs) or 

minimal cutsets (MCs) in the two state model case 

and d-MPs (i.e., minimal path vectors to level d [3], 

lower boundary points of level d [12], or upper 

critical connection vector to level d [7]) or d-MCs 

(i.e., minimal cut vectors to level d [3], upper 

boundary points of level d [8], or lower critical 

connection vector to level d [3]) for each level d in 

the multistate model case. The stochastic 

transportation network with random transmission 

times here can be treated as a multistate system of 

multistate components and so the need of an 

efficient algorithmto search for all of its d-MPs 

arises. The main purpose of this paper is to present a 

simple and efficient algorithm to generate all d-MPs 

of such a network in terms of minimal pathsets. 

Several examples are given to illustrate how all d-

MPs are generated by our method and the 

reliabilities of such systems are computed by further 

applying the state-space decomposition method [3]. 

 

II. BASIC ASSUMPTION 

Let ( , , , )G N E L U= be a directed 

stochastic transportation network with the 

uniquesource s and the unique sink t, where N is the 

set of nodes, { |1 }iE e i n= £ £ is theset of edges, 

1 2( , ,..., )nL l l l= and ),...,,( 21 nuuuU  ,where il  and 

iu denote theminimum and maximum timesof each 

edge ie  for .,...,2,1 ni  Such a stochastic network is 
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assumed to further satisfy the following 

assumptions: 

1. Each node is perfectly reliable. Otherwise, the 

network will be enlarged by treatingeach of such 

nodes as an edge. 

2. The transmission time of each edge ie is an 

integer-valued random variable that takes 

integervalues from il  to iu according to a given 

distribution. 

3. The transmission times of different edges 

are statistically independent. 

Assumption 3 is necessary when reliability 

evaluation is required. 

Let ),...,( 2,1 nxxxX  be a system-state 

vector (i.e., the current transmission time of 

eachedge ie under X is ix ,where ix takes integer 

values from il  to iu ,and ( )V X , the shortest 

transmission time from s to t under X. Such a 

function ( )V ×  plays the role of structure function of a 

multistate system with ( )V L h= and ( )V U k= . 

Under the system-state vector ),...,( 2,1 nxxxX  , the 

edge set E  has the following three important 

subsets: { | }X i i iN e E x u= Î < , { | },X i i iB e E x u= Î =

and { | ( ) ( )},X i X iS e N V X I V X= Î + > where

1 2( , ,..., ),i i i inI d d d=  with 1ij  if ij   and 0 if 

ij  . In fact, ( \ )X X X XE S N S B= È È  is a disjoint 

union of E  under X . 

For level , 1,..., 2, 1d h h k k= + - - , a system-state 

vector X  is said to be a d-MP if and only if: (1) its 

system level is d (i.e., ( )V X d= ), and (2) each edge 

without maximum transmission time under X is 

sensitive (i.e., Nx = Sx). If level d is given, then 

Pr{ | ( ) }X V X d£ , i.e., the probability that the 

shortest transmission time from the source node to 

the sink node is less than or equal to d, is taken as 

the system reliability. 

 

III. MODEL CONSTRUCTION 

Suppose that 
mPPP ,...,, 21

are total MPs of 

the system. For each iP , the transmission time from 

the source node s to the sink node t is defined as the 

sum of the transmission time of all edges in it. 

Hence, we have 1( ) min { { | }}i

i m j jj
V X x e P£ £= Îå  is 

the shortest transmission time from s to t under X . 

Because ( )V X  is non-decreasing in each argument 

(edge length) under X , the stochastic transportation 

network with random transmission times can be 

viewed as a multistate monotone system with the 

structure function ( )V × . 

A necessary condition for a system-state vector X  

to be a d-MP is stated in the following lemmas. Our 

algorithm relies mainly on such a result. 

Lemma 1. If X is a d-MP, then 

{ | { | } }.i i

X i j jj
S P x e P dÍ Î =åI  

 

Lemma 2. If X  is a d-MP. Then there exists at 

least one MP 
1 2

{ , ,..., }
r

r

r r rnP e e e=  such that the 

following conditions are satisfied: 

1 2
...

rr r rnx x x d+ + + =  (3.1) 

  for all r

i i i il x u e P£ £ Î  (3.2) 

  for all r

i i ix u e P= Ï  (3.3) 

Any system-state vector ),...,,( 21 nxxxX  that 

satisfies constraints (3.1) - (3.3) simultaneously will 

be taken as a d-MP candidate. A d-MP is obviously 

a d-MP candidate by Lemma 2. By definition, a d-

MP candidate X  is a d-MP if (a) ( )V X d=  and (2) 

X XN S= . 

 

Lemma 3. If the network is parallel-series, then 

each d-MP candidate is a d-MP. 

 

IV. THE PROPOSED METHOD 

Suppose that all MPs, mPPP ,...,, 21 , have 

been stipulated in advance [12, 15], the family of all 

d-MPs can then be derived by the following steps: 

Step 1. For  each 
1 2

{ , ,..., },
r

r

r r rnP e e e= f ind all 

integer valued solutions of the following 

constraintsby applying an implicit enumeration 

method: 

(1) 
1 2

...
rr r rnx x x d+ + + =  

(2)   for all r

i i i il x u e P£ £ Î  

Step 2. Set   for all r

i i ix u e P= Ï . 

Step 3. Obtain the family of d-MP candidates 

),...,,( 21 nxxxX   by steps 1 and 2. 

Step 4.  Check each d-MP candidate X whether it is 

a d-MP: 

(A) If the network is parallel-series, then each 

candidate is a d-MP. 

 (B) If the network is non parallel-

series, then check each candidate whether it is a d-

MP as follows: 

 (4.1) If there exists an i r¹  such that 

{ | }ij jj
x e P dÎ <å , then X  

is not a d-MP and go to step (4.4). 

 (4.2) Let { | { | } }.i

j jj
I i x e P d= Î =å  
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 (4.3) If there exists an \ i

j i Ie A PÎÎ I  

such that 
j jx u¹ , then X  is not a d-MP. 

(4.4) Next candidate. 

 

 

V. NUMERICAL EXAMPLES 
The following two examples are used to illustrate the 

proposed algorithm:  

 

Example 1. 

Consider the network in Figure 1.  

 
 

It is known that 

1 2 3 4 5( , , , , ) (1,1,2,2,1)L l l l l l= =  with ( ) 2,V L =

1 2 3 4 5( , , , , ) (2,5,4,5,3)U u u u u u= =  with ( ) 4,V U = , 

and there exists three MPs; 
1

1 2{ , },P a a=
2 3

3 4 5{ }, { , }P a P a a= = . Given d=3, the family of 

3-MPs is derived as follows: 

Step 1. For 1

1 2{ , },P a a=  find all integer-valued 

solutions of the following constraints by applying 

the enumeration method: 

 
1 2 3x x+ =  

 
11 2x£ £  

 
21 5x£ £  

Step 2. Set 
3 44, 5x x= = , and 

5 3.x =  

Step 3. Two 3-MP candidates (1,2,4,5,3)X =  and 

(2,1,4,5,3)X =  are obtained.  

Step 4. Since the network is series-parallel, 

(1,2,4,5,3)X =  and (2,1,4,5,3)X =  are 3-MPs. 

Step 1. For 2

3{ },P a=  find all integer-valued 

solutions of the following constraints by applying 

the enumeration method: 
 

3 3x =  

 
32 4x£ £  

Step 2. Set 
1 2 42, 5, 5,x x x= = =  and 

5 3.x =  

Step 3. One 3-MP candidate (2,5,3,5,3)X =  is 

obtained.  

Step 4. Since the network is series-parallel, 

(2,5,3,5,3)X = is a 3-MP. 

Step 1. For 3

4 5{ , },P a a=  find all integer-valued 

solutions of the following constraints by applying 

the enumeration method: 
 

4 5 3x x+ =  

 
42 5x£ £  

 
51 3x£ £  

Step 2. Set 
1 22, 5x x= = , and 

3 4.x =  

Step 3. One 3-MP candidate (2,5,4,2,1)X =  is 

obtained.  

Step 4. Since the network is series-parallel, 

(2,5,4,2,1)X =  is a 3-MP. 

 

Example 2. 

Consider the network in Figure 2. It is known that 

1 2 3 4 5 6( , , , , , ) (1,1,1,1,1,1)L l l l l l l= =  with ( ) 2V L = ,

1 2 3 4 5 6( , , , , , ) (3,2,2,2,2,3)U u u u u u u= =  with ( ) 5V U =

,and there exists four MPs; 1 2

1 2 1 3 6{ , }, { , , },P a a P a a a= =

3

2 4 5{ , , },P a a a= 4

5 6{ , }P a a= . 

Given d=4, the family of 4-MPs is derived as 

follows: 

Step 1. For 1

1 2{ , },P a a=  find all integer-valued 

solutions of the following constraints by applying 

the enumeration method: 
 

1 2 4x x+ =  

 
11 3x£ £  

 
21 2x£ £  

Step 2. Set 
3 42, 2x x= = , and 

5 3.x =  

Step 3. Two 4-MP candidates (2,2,2,2,2,3)X =  

and (3,1,2,2,2,3)X =  are obtained.  

Step 4. Check (2,2,2,2,2,3)X =  whether it is a 4-

MP. 

  (4.1) { | } 4i

j jj
x e PÎ >å , for 

each iP  with 1i ¹ . 

  (4.2) {1}I = . 

  (4.3) (2,2,2,2,2,3)X =  is a 4-

MP. 

  (4.4) Next candidate (i.e., 

check (3,1,2,2,2,3)X =  whether it is a 4-MP.) 

  (4.1) { | } 4i

j jj
x e PÎ >å , 

for each 
iP  with 1i ¹ . 

  (4.2) {1}I = . 

  (4.3) (3,1,2,2,2,3)X =  is a 4-MP. 

Step 1. For 2

1 3 6{ , , },P a a a=  find all integer-

valued solutions of the following constraints by 

applying the enumeration method: 
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1 3 6 4x x x+ + =  

 
11 3x£ £  

 
31 2x£ £  

 
61 3x£ £  

Step 2. Set 
2 42, 2,x x= =  and 

5 2.x =  

Step 3. Three 4-MP candidate (1,2,1,2,2,2),X =

(1,2,2,2,2,1),X = and (2,2,1,2,2,1)X =  are 

obtained.  

Step 4. The result is listed in Table 2. 

 

 
Figure 2:The 6-arcs Bridge Network 

 

Table 1:Probability Distributions of Edge Transmission Time in Example 2. 

 
 

Table 2: List of All 4-MPs in Example 2. 

 
   

 

VI. RELIABILITY EVALUATION 
If dm

YYY ,...,, 21 are the collection of all d-

MPs, then the system reliability for leveld is 

defined as 
1Pr{ { | }}.

m i

iR X X Y== È £d

d
To compute 

it, several methods such as inclusion-exclusion [7, 

12], disjoint subset [13], and state-space 

decomposition [3] are available. Here we apply the 

state-space decomposition method [3] to Example 2 

s 
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and obtain that 
4 1Pr{ { | }} 0.88796

m i

iR X X Y== È £ =d  for 

demand level d 4= . Similarly, we have 

2 Pr{ | ( ) 2} 0.1876R X V X= £ = , 
3 Pr{ | ( ) 3} 0.6278R X V X= £ =

, and 
5 Pr{ | ( ) 5} 1R X V X= £ = . If the prior 

distribution of level d of example is 
2 0.1,p =

3 0.2,p = 4 0.5,p = and 
5 0.2,p = then the system 

reliability is 
5

2

0.861692d d

d

R R p
=

= =å . 

 

VII. SUMMARY AND CONCLUSIONS 
Given all MPs that are stipulated in 

advance, the proposed method can generate all d-

MPs of a stochastic transportation network with 

random edge transmission times for each level 

d. The system reliability, i.e., the probability that 

the shortest transmission time from a specified 

source node to another specified sink node t is 

less than or equal to d, can then be computed in 

terms of them by further applying the state space 

decomposition method. 
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