Study of Degree Based Topological Indices of Carbon Nanocones

G. K. Sanap* V. P. Sangale**

*Associate Professor, Department of Mathematics, Sunderrao Solanke Mahavidyalaya, Majalgaon Dist. Beed. (MS) India.

**Associate professor, Department of Mathematics, R. B. Attal College, Georai, Dist. Beed.(MS) India. Corresponding Author: G. K. Sanap

Date of Submission: 26-07-2020 Date of Acceptance: 06-08-2020

ABSTRACT: Let G be a simple and connected graph with n vertices and m edges. The degree d_u of a vertex u ∈ V (G) is the number of vertices of G adjacent to u. The nanocones (CNCs) can be considered as the nanoscale conical carbon-based material. In carbon nanocones $CNC_k[n]$, the parameter k defines the length of inner cycle and n defines the number of layers of the graph. In this paper degree based topological indices for carbon nanocones $CNC_3[2]$, $CNC_4[2]$, $CNC_5[2]$, $CNC_6[2]$ and $CNC_7[2]$ and some inequalities are investigated.

KEYWORDS: Topological indices, carbon nanocones, inequality, one pentagonal nanocone, one heptagonal nanocone.

I. INTRODUCTION

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. A topological index is a number related to a molecular graph invariant automorphism of Graph. The ability of elemental carbon to form extended two dimensional sheet structures with extremely strong bond makes it a stable material to produce isolated objects .The sheets can be resealed notionally, to form a cone or horn [1].

Nanocones are discovered in 1994 [2]. Nanocones are carbon based structures formed by introducing 60^0 disinclination defects in two-dimensional graphenes sheets [3] (fig.1).

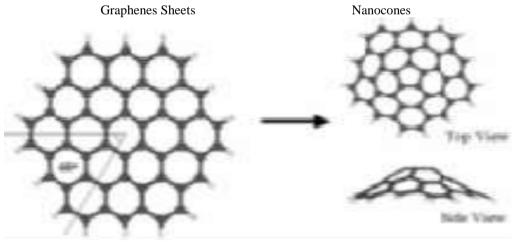


Figure (1): 2-Dimensional sheet of graphene.

Folding graphene sheets have five possible closed distinct CNC structures and the apex angles of a cone can be calculated as

Where θ is the disinclination angle in degrees can be taken as $60^{\circ},120^{\circ},180^{\circ},240^{\circ}$ and 360° [4].In carbon nanocones $CNC_k[n]$, the parameter k defines the length of the inner cycle

and n defines the number of layers of the graph. The nanocones CNC₃[2], CNC₄[2],CNC₅[2], consists of triangle ,square and pentagon as its core surrounded by two layers of hexagons respectively fig.(2). The 2-dimensional of graphof CNC₇[1] withheptagon as core is also shown in fig.2. The definitions for degree based topological indices are

International Journal of Advances in Engineering and Management (IJAEM) ISSN: 2395-5252

Volume 2, Issue 3, pp: 656-660

www.ijaem.net

= -3, -2, 2, 3 where adjustable is parameter),Inverse indeg index IN(G), Geometric-Arithmetic index GA(G) and some inequalities studied CNC₃[2]. are in $CNC_4[2], CNC_5[2], CNC_6[2]$ CNC₇[2] and nanocones.

taken from [5-10]. In this paper our notations is standard and mainly taken from standard books of graph theory [11-16]. In this paper vertex degree-based topological indices:Randic

index R(G). Reciprocal Randics index

RR(G), general Randic indices (with = -3.-2.2.3) where is adjustable parameter, Zagreb indices(first $M_1(G)$, second $M_2(G)$ and third $M_3(G)$, modified second Zagreb indexM2*(G),secondmultiplicative Zagreb index,,modified first Zagreb index Π_1^* , reduced second Zagreb indexR(M2), Augmented Zagreb index ABC(G),hyper Zagreb index HM(G), Atom-bond connectivity index ABC(G), Harmonic index H(G), Sum-connectivity SCI(G), Sum-connectivity indices (with index

II. RESULTS AND DISCUSSION

Degree-based Topological indices

In carbon nanocones $CNC_k[n]$, parameter k defines the length of inner cycle and n defines the number of layers of the graph. The 2dimensional graphs for CNC₃[2],CNC₄[2] and $CNC_5[2]$ and $CNC_7[1]$ are shown in figure (2).

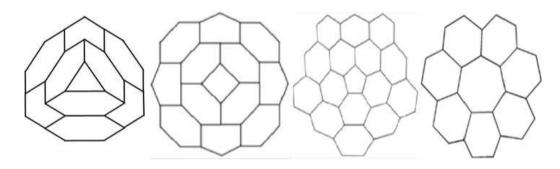


Figure (2): 2-Dimensional graphs of CNC₃[2],CNC₄[2],CNC₅[2] and CNC₇[1] nanocones

From 2-dimensional graphs of These nanocones the edges of degree (3, 3), (2, 2) and (3, 2) are counted and given in table (1).

Table no (1): The number of edges $(d_u = 3, d_v = 3)$, $(d_u = 2, d_v = 2)$ and $(d_u = 3, d_v = 2)$ for nanocones $CNC_k[2]$.

Carbon Nanocones	The number of edges of type $d_u=3, d_v=3, (E_1)$	The number of edges of type $d_u=2,d_v=2$ (E2)	The number of edges of type $d_u=3, d_v=2$ (E ₃)	
CNC ₃ [2]	21	3	12	
CNC ₄ [2]	29	4	16	
CNC ₅ [2]	35	5	20	
CNC ₆ [2]	42	6	24	
CNC ₇ [2]	49	7	28	

International Journal of Advances in Engineering and Management (IJAEM) ISSN: 2395-5252

Volume 2, Issue 3, pp: 656-660

www.ijaem.net

The definitions of degree-based topological indices [5 - 10] :Randic index R(G) ,Reciprocal Randic index RR(G),Randic index (with h = -3, -2.2.3) where h is adjustable parameter, Zagreb indexfirst $M_1(G)$, second $M_2(G)$. third M₃(G), modified Zagreb index M₂*(G), second multiplicative Zagreb index ∏2,modified first Zagreb index Π_1^* , reduced second Zagreb index R(M₂), Augmented Zagreb index ABC(G),hyper The Randic index

R (G) =
$$\sum_{u \ v \in E(G)} 1/\sqrt{du}dv$$
 = $|E_1|/\sqrt{9} + |E_2|/\sqrt{4} + |E_3|/\sqrt{6}$

Zagreb index HM(G), Atom-bond connectivity ABC(G), Harmonic index index H(G),Sum connectivity index SCI(G), Sum-connectivity indices with h = -3.-2.2.3 where h is adjustable parameter. Inverse indeg index IN(G), Geometric-Arithmetic index GA(G) are used for computing TIsof $CNC_3[2]$, $CNC_4[2]$, $CNC_5[2]$, $CNC_6[2]$ and CNC₇[2] nanocones.

Nanocone CNC₃[2]

$$R(G) = \sum_{u \ v \in E(G)} 1/\sqrt{du} dv = |E_1|/\sqrt{9} + \overline{|E_2|}/\sqrt{4} + |E_3|/\sqrt{6} = 21/\sqrt{9} + 3/\sqrt{4} + 12/\sqrt{6}$$

= 13.399

 $CNC_4[2]$

$$R(G) = \sum_{u \in E(G)} 1/\sqrt{du} dv = 29/\sqrt{9} + \frac{4}{\sqrt{4}} + \frac{16}{\sqrt{6}} = 18.2 \text{ CNC}_{5}[2]$$

$$R(G) = \sum_{u \in E(G)} 1/\sqrt{du} dv = 35/\sqrt{9} + \frac{5/\sqrt{4}}{5/\sqrt{4}} + 20/\sqrt{6} = 22.34 \text{ CNC}_{6}[2]$$

$$R(G) = \sum_{u \in E(G)} 1/\sqrt{du} dv = 42/\sqrt{9} + 6/\sqrt{4} + 24/\sqrt{6} = 26.79 \text{ CNC}_7[2]$$

$$R(G) = \sum_{u \ v \in E(G)} 1/\sqrt{du} dv = 49/\sqrt{9} + \frac{7}{7/\sqrt{4}} + 28/\sqrt{6} = 31.27$$

Using the number of edges of type $(d_u=3,d_v=3),(d_u=2,d_v=2),(d_u=3,d_v=2)$ and definitions of degree-based indices [5-10],the TIs are computed and tabled in table (2)

for $CNC_3[2]$, $CNC_4[2]$, $CNC_5[2]$, $CNC_6[2]$ and CNC₇[2] nanocones.

The general Randic index with h= -3 has least values due the factor $\times = -3$ and second multiplicative Zagreb index has highest values as it

is defined in multiplicationform, among the topological indices studied. By knowing number of degrees $(d_u,d_v):(3,3),(2,2),(3,2)$ the first second Zagreb and Harmonic polynomials can be

 $CNC_4[2], CNC_5[2],$ computed for CNC₃[2], $CNC_6[2]$ and $CNC_7[2]$ nanocones[9,19]. The values of TIs increase from CNC₃[2] to CNC₇[2] nanocones due to increase in number ofedges E₁,E₂ and E_3 in $CNC_3[2]$ - $CNC_7[2]$.

Inequalities for topological indices

- 1) $H(G) \leq GA(G)$, is obeyed for nanocones with k=3,4,5,6,7 and n=2.
- 2) $H(G) \le X(G)$, is obeyed (where X(G)-Sumconnectivity index) in CNC₃[2]-CNC₇[2].

3) The general inequality for Zagreb first and second indices with n vertices and m edges , $M_1(G)/n \le M_2(G)/m$ is satisfied in $CNC_4[2]$, as is the case for all graphs.

Table number (2): Topological indices of CNC₃[2]-CNC₇[2] carbon nanocones

Topological	$CNC_3[2]$	$CNC_4[2]$	$CNC_5[2]$	$CNC_6[2]$	$CNC_7[2]$
indices					
R(G)	13.399	18.2	22.34	26.79	31.27
RR(G)	98.39	134.18	163.98	196.77	229.57
$R(G)\lambda = -3$	0.13123	0.176349	0.21873	0.2625	0.3063
$R(G)\lambda = -2$	0.78008	1.052532	1.3005	1.5602	1.8202
$R(G)\lambda = 2$	2181	2989	3635	4362	5089
$R(G)\lambda = 3$	18093	24853	30155	36186	42217
M_1	198	250	330	396	462
M_2	273	373	455	546	637
M_3	12	16	20	24	28
M2*	5.084	6.889	8.473	10.167	11.862
Π_2	163296	400896	756000	1306368	2074464

International Journal of Advances in Engineering and Management (IJAEM) Volume 2, Issue 3, pp: 656-660 www.ijaem.net ISSN: 2395-5252

П1*	1512	2784	4200	6048	8232
$R(M_2)$	111	152	185	222	259
AZI(G)	359.21	490.33	598.69	718.4	834.15
HM(G)	1104	1508	1840	2208	2576
ABC(G)	24.61	34.18626	41.011	49.2132	57.4154
H(G)	13.3	18.07	22.17	26.6	31.34
SCI(G)	15.441	24.9975	30.7365	36.8338	43.0311
$SCI(\lambda = -3)$	0.2401	0.324759	0.4002	0.48019	0.5603
$SCI(\lambda = -2)$	1.25067	1.69562	2.0848	2.50176	2.91872
$SCI(\lambda = 2)$	1104	1508	1840	2208	2576
$SCI(\lambda = 3)$	6228	8520	10380	12456	14532
IN(G)	48.9	66.7	81.5	85.2	114.1
GA(G)	35.7578	48.6769	59.5962	71.5155	76.4347

III. CONCLUSION

The vertex degree-based topological indices are computed on 2-dimensional graphs of $CNC_3[2]$, $CNC_4[2]$, $CNC_5[2]$, $CNC_6[2]$ and $CNC_7[2]$ nanocones . By knowing number of degrees as (3,3),(2,2) and (3,2) the first ,second Zagreb polynomial and Harmonic polynomial can be computed for $CNC_3[2]$ - $CNC_7[2]$ carbon nanocones. The values of vertex degree-based topological indices increase with $CNC_3[2]$ - $CNC_7[2]$ carbon nanocones.

REFERENCES

- [1]. S.Iijima,M.Yudusaka,R.Yamada et al,Nanoaggregates of single-walled graphic carbon nanohorns,Chem.Phys.Lett.1999,309(3-4):165-170.
- [2]. Krishnan, Ebbesen, etal ,Nature ,388,(2001)241.
- [3]. O.A.Shenderova,B.L.Lawson,D.Areshkin and D.W.Brenner,Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled fromnanocones,Nanotechnology12(2001)19 1-197.

International Journal of Advances in Engineering and Management (IJAEM) ISSN: 2395-5252

Volume 2, Issue 3, pp: 656-660

www.ijaem.net

[4]C.Baykasoglu et al ,SEECCM-III on ECCOMAS and IACM special interest conference ,M.Papadrakakis,M.Kojik,I.Tuncer(eds.)KosIsland,Greece,12-14 June(2013).

[5]A.Ali,A.A.Bhatti and Z.Raza.Further inequalities between vertex degree-based. topological indices.arXiv.1401-7511v1(math CO.)29 Jan 2014.

[6]M.J.Nikmeher, N.Soleimani and M.Veylaki, Proceeding of IAM V.3, N.1, 2014, pp. 89-97.

[7]I.Gutman and J.Tosovic, Testing the quality of molecular structure descriptors, vertex-degree based topological indices J.Serb.(Chem.Soc.78(6)805-810(2013).

[8]T.Doslic, Vertex-weighted, Wiener polynomials for composite graphs, ASRMathematicaContemporanea 1(2008)66-80.

[9]M.R.Farahani, Int.Journal of Eng.and Technology Vol.3,No 1,Feb-2015,pp.01-06. Research [10]I.Gutman,Degree-based indices, Croat. Chem. Acta 86(4)(2013)351-361. topological

[11] R. Diestel, Graphtheory, Electronic edition, Springer-Verlog, Nev York, 1997-2000.

[12]D.B.West, Introduction to graph theory, second edition, PHI, Learning Private Ltd. New Delhi, 2009, 67-80.

[13]A.Bondy and U.S.R.Murthy, Graph theory applications, University of Waterloo Canada, 5th edition, 1982.

[14]F.Harary ,Graphtheory,Addison-Wesley Publication Company London,1969. [15]R.J.Wilson,Introduction ,5thedition,Pearson graph to theory England,2010. [16]C.Vasudev,Graph theory applications, New Age, Int. Publications, New Delhi, 2006.

[17]K.Kurkcu, Atom-based connectivity index of carbon nanocones and An algorithm, Applied Mathematics and Physics, 2015, Vol. 3, No. 1.06-09.

[18]S.Hayat and M.A.Malik,Inertia ,Nullity and Signature of CNC₄[n]Nanocone,Sci.Int.(Lahore),27(3),1825-1827,2015,ISSN 1013-5316,CODEN;SINTE-8.

[19]M.R.Farahani, Zagreb indices and Zagreb polynomials of Polycyclic aromatic hydrocarbons PAHs, Journal of Chemica Acta,2(2013)70-72.

[20]S.Havat. Valence based topological indices of Carbon nanocones, Sci. Int. (Lahore), 27(2), 863-868,2015,ISSN 1013-5316,CODEN:SINTE-8.

International Journal of Advances in Engineering and Management

ISSN: 2395-5252

IJAEM

Volume: 02 Issue: 01 DOI: 10.35629/5252

www.ijaem.net

Email id: ijaem.paper@gmail.com