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ABSTRACT: The MRI scanner doesn’t measure
the BOLD signal at such a high temporal resolution
lack of required period for an individual fMRI
measurement or short TR (Repetition time) is on
the order of 1 to 2 seconds. However recent
advances in parallel imaging and multiband
excitation technologies are vastly shortening the
required TR of fMRI. In this paper, we make an
HRF model within FIR function basis that provides
how the BOLD signal in a voxel will vary due to a
short burst of neural activity.

Keyword: fMRI, BOLD Signal, FIR Basis
function, HRF, TR, Voxel, Gamma Probability
density function.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a
process use to basically ‘look inside’ of ingredients
in a non-invasive manner. The functional MRI is
scanned the internal image of blood flow in human
brain that consume fuel such as sugar and oxygen
which is measured in form of BOLD signal. The
BOLD signal mostly peaks 4 to 6 seconds after the
beginning of neural activity, after which it
decreases  back  toward  baseline, even
undershooting baseline amplitude around 8 to 12
seconds after onset [1]. If there is no addition
neural activity the BOLD signal eventually returns
to baseline levels, which is approximately 20
seconds [2]. The whole periodic portion of BOLD
signal is referred to as Hemodynamic Response
Function (HRF). In this paper, we estimate a model
HRF to use in fMRI within FIR basis to show the
brain activity in presence or absence hemoglobin in
Human blood flow on brain tissue. The estimate
model of HRF is a sum of two Gamma
distributions [3]. One of the distributions models
the initial peak of the BOLD signal, and another
distribution which is inverted as previous
distribution models the undershoot of BOLD signal

[4]. Finally, we will use the modeled HRF signal
to represent the fMRI’s image.

Il. MATERIALS AND METHODS
Using functional magnetic resonance
imaging, neuroscientists design experiments that
present stimuli having particular features that are

hypothesized to be encoded by neurons in a

particular region of interest in the brain. We can

perform this task three individual steps are
described below:

1) Modeling the HRFs with the combine of two
Gamma probability density functions which is
characterizing the BOLD signal.

2) Modeling the HRFs with a set of Time-delayed
Impulses as a series of weighted FIR basis
functions.

3) Finally, selected HRF model is used to apply
in voxels and producestimuli for fMRI

2.1 Step one: Modeling the HRFs with the
combine of two Gamma probability density
functions which is characterizing the BOLD signal
in MATLAB.

Modeling the HRF combine of two gamma
probability density functions [1¥gampdf — 40% of
2"gampdf 1-

cle;

clear;

closeall;

t=0:1:20;

hrfl = gampdf (t,4) + - .4* gampdf (t,8);

plot (t,hrfl,'r','linewidth',3);

holdon;

hrf2 = gampdf (t,6) + -.4*gampdf (t,10);

plot (t,hrf2,'b’,'linewidth’,3);

hrf3 = gampdf (t,8) + -.4*gampdf (t,12);

plot (t,hrf3,'y",'linewidth’,3);

p = size (t);

q = zeros (p);

baseline = plot (t,q,'k--",'linewidth’,3);
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xlabel ("Time for HRF activity onset(s)");

ylabel (BOLD signal’);

title (sprintf('Model of three deferent values HRF \n
[1st gampdf - 40 percent of 2nd gampdf]’));

legend (‘hrfl','hrf2','hrf3''baseline");

holdoff;

Modeling the HRF combine of two gamma
probability density functions [1%gampdf — 50% of
2"gampdf -

cle;

clear;

close all;

t=0:1:20;

hrfl = gampdf (t,4) + - .5* gampdf (t,8);

plot (t,hrfl,'r''linewidth',3);

hold on;

hrf2 = gampdf (t,6) + -.5*gampdf (t,10);

plot (t,hrf2,'b",'linewidth’,3);

hrf3 = gampdf (t,8) + -.5*gampdf (t,12);

plot (t,hrf3,'y",'linewidth’,3);

p = size (t);

q = zeros (p);

baseline = plot (t,q,'k--",'linewidth',3);

xlabel (‘'Time for HRF activity onset(s)");

ylabel (‘'BOLD signal’);

title (sprintf('Model of three deferent values HRF
\n[1st gampdf - 50 percent of 2nd gampdf]"));
legend (‘hrfl','hrf2','nrf3''baseline’);

hold off;

Modeling the HRF combine of two gamma
probability density functions [1%gampdf — 60% of
2"gampdf -

cle;

clear;

closeall;

t=0:1:20;

hrfl = gampdf (t,4) + - .6* gampdf (t,8);

plot (t,hrfl,'r",'linewidth’,3);

holdon;

hrf2 = gampdf (t,6) + -.6*gampdf (t,10);

plot (t,hrf2,'b’,'linewidth’,3);

hrf3 = gampdf (t,8) + -.6*gampdf (t,12);

plot (t,hrf3,'y",'linewidth’,3);

p = size (t);

q = zeros (p);

baseline = plot (t,g,'k--",'linewidth',3);

xlabel ("Time for HRF activity onset(s)");

ylabel (BOLD signal’);

title (sprintf('Model of three deferent values HRF \n
[1st gampdf - 60 percent of 2nd gampdf]"));

legend (‘hrfl','hrf2','hrf3''baseline");

holdoff;

2.2 Step two: Modeling the HRFs with a set of
Time-delayed Impulses as a series of weighted FIR
basis functions in MATLAB-

% selected HRF model as a series of weighted
basis function.

clc;

clear;

closeall;

t=0:1:20;

hrf3 = gampdf (t,8) + -.5*gampdf (t,12);
stem (t,hrf3,'y’,'linewidth’,1.5);

holdon;

p = size (t);

q = zeros (p);

baseline = plot (t,g,'k--",'linewidth’,3);
xlabel (‘'Time for HRF activity onset(s)");
ylabel (‘'BOLD signal');

title (sprintf('Selected HRF model as a series of \n
weighted basis function'));

legend ('hrf3','baseline’);

holdoff;

% HRF as weighted FIR Representation

figure;

holdon

cnt=1,

map = jet (64);

cRange = linspace (min(hrf3), max(hrf3),64);
foriT = numel(hrf3):-2:1

firSignal = ones (size(hrf3));

firSignal (cnt) = 2;

[~,cldx] = min(abs(cRange-hrf3(cnt)));

color = map (cldx,:);

plot (1:numel(hrf3),firSignal T 2*(iT-
1),'color',color,'Linewidth’,1)

cnt=cnt +1;

end
colormap(map);colorbar;caxis([min(hrf3)
max(hrf3)]);

axissquare;

ylabel ('FIR Basis Function’)

xlabel (‘Time (TR)")

set (gca,"YTick',0:2:39,"Y TickLabel',20:-1:1)
title (sprintf(HRF as weighted FIR basis, \n Seting
20 FIR basis functions"));

2.3 Step three:Experiments have on verities types
of voxels conducted by using selective HRF model.
The related MATLAB code is described in
following -

% An Experiment on a Voxels by the selected HRF
model.
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trPerStim =20;

nRepeat = 8;

nTRs = trPerStim * nRepeat + length (hrf3);
nCond = 3;

nvox = 3;

impulseTrain0 = zeros(1,nTRS);

% Random onset Times (TRS)
onsetldx = randperm (nTRs - length (hrf3));

% Voxel Type one [Visual Stimulus]
impulseTrainLight = impulseTrain0;
impulseTrainLight (onsetldx (1:nRepeat)) = 1;
onsetldx (1:nRepeat) = [];

% Voxel Type two [Auditory Stimulus]
impulseTrainTone = impulseTrain0;
impulseTrainTone (onsetldx(1:nRepeat)) = 1;
onsetldx (1:nRepeat) = [];

% Voxel Type Three [somatosensory stimulus]
impulseTrainHeat = impulseTrain0;
impulseTrainHeat (onsetldx(1:nRepeat)) = 1;

% Experiment design and stimulus sequence

D =
[impulseTrainLight',impulseTrainTone',impulseTra
inHeat';

X =conv2 (D,hrf3";

X =X (1:nTRs,3);

% Stimulate response of voxels with various
selectivity

visualTuning = [4 0 0];

auditoryTuning = [0 2 0];

somatoTuning =0 0 3];

noTuning = [1 1 1];

beta = [ visualTuning’, ...

auditoryTuning’, ...

somatoTuning’, ...

noTuning';

y0 = X*beta;

SNR =5;

noiseSTD = max (y0)/SNR;

noise = bsxfun (@times,
randn(size(y0)),noiseSTD);

y = y0 + noise;

% Display four tpyes Voxel Timecourses
voxNames =
{'Visual','Auditory’,'Somat','Unselective'};
cols = lines (4);
figure;
foriv = 1:4
subplot (4,1,iV)

plot (y(:,iV), 'Color', cols(iV,:), 'Linewidth',2);
xlim ([0,nTRs]);
ylabel('BOLD Signal’)
legend (sprintf("%s Voxel', voxNames{iV}))
end
xlabel('Time(TR)")
set (gcf,'position’, [100,100,880,500]);

I11. RESULTS

The simulation results mentioned above
three steps are represented graphically and
sequentially.In 1% step, we design nine HRF model
with different values of various parameters, which
are fitting in linear and cubic methods, are showing
in the following table with their estimate error
(residuals) —

Table 1 : HRF model with their residual

Paramete Residual’s
HRF Model s value

Linear | Cubic

Stepl- 0.826 | 0.709
40(hrfl) 43 4
Stepl- 0.689 | 0.455
40(hrf2) 91 57
Stepl- 0.635 | 0.321
40(hrf3) 65 38
Stepl- 0.863 | 0.736
50(hrfl) 15 86
Stepl- 0.701 | 0.483
50(hrf2) 84 14
Stepl- selected 0.631 | 0.329
50(hrf3) 03 63
Stepl- 0.903 | 0.764
60(hrfl) 83 56
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Stepl-
60(hrf2)

Stepl-
60(hrf3)

0.719 | 0.511
63 34
0.631 | 0.339
43 57

The result shows that a voxel located in
visual cortex will be more selective for the light
than for the tone or the heat stimulus. A voxel in

than for the other two stimuli. A voxel in the
somatosensory cortex will likely be more selective
for the heat than the visual or auditory stimuli.

auditory cortex will be more selective for the tone

Figure 1:HRF models showing with their error
estimation (residuals) in following nine figure -

Wkl o Pown Subered vawen -
19 gt pmevnon of Jned o)

Wi 1 B e

(V91 et - 43 gercen o Dt gumpty

L TR AN
w ' Maow of thews detarect sabies MEF

[iat gurnget! - &3 puscers of Ja! gervgdt]

—

BOLD upre

Linsar moon of retioiasiy = 0 2000
Cubse moem of resicusts » 102138

DOI: 10.35629/5252-0303719726  Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 722



\ﬂ/\ International Journal of Advances in Engineering and Management (IJAEM)
—

Volume 3, Issue 3 Mar. 2021, pp: 719-726 www.ijaem.net ISSN: 2395-5252

e !G00t )

Nodel of thees delarent vidues HRF
[ 51 gureptt - 33 parcent of Jret guvpet]
B c— 11
= Lo DOTIES » 0 09477 B
k ¥ 0001802y -0 004 M oyt
q*' e
g - b
o e R —
i 8 .4 G kWt N N W e
Thant bir HSF aily Smadin
o residusks
Lt rowve of ieaiiuds « O 28315
ot Cutss_agame of reachass = 3 7160
@ - p— —
— *
o1
02
' . . v "o -4 w ow 2
-y t-0)e)

' ) . " o "0 “ " " n

Tve for MEF acadty oreens
=k

Linear monn of sy = 0 20104
Cubse moen of fewsduts » D.43314

om
ok <
om: e Y
o1
»
a . L ] w g " " " 2
et AN

Model of Sirve delerent values AP
" « 5% perverdt of nd garwes|

——
¥« SO0 —
o B 00T + 0 Lok oL
e

e py

Tho Ay #3F choly o)
[

Lirewr roem of rescusis » 06310
Gl Tatic aen ol fesdia = 0 1163

o
"
\ N ' " oMW B
o il Vbt 1 v cheterst +skas HHP
J!-W-l.—_n-uh‘m_

pE—
- s o DOWTE [,
pe (oot oamie -
e
i . -
a1 n .
¢ ] . . . " u +- W 1 u
Torm b MO oty mtin)
.
Lirvwsr: rowms of reschast s = 0 SO583
41| Catmrnarm of mmtas « (043¢
| o ——
@
“ v
3 . " . . T

DOI: 10.35629/5252-0303719726  Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 723



@)

International Journal of Advances in Engineering and Management (IJAEM)
Volume 3, Issue 3 Mar. 2021, pp: 719-726 www.ijaem.net

DOI: 10.35629/5252-0303719726  Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 724

Wodel of frree delarent valven HRP
(198 uwedt - 99 omscant of 2red parmodt]

s « LOTRSE —

-

po! R 0 CORTRP « 3 DT

] P
-

a [ —— S

Livwwr: roeen of rensusts » 0 715060
Catic: soem of fagcuan = 051134

L1
Lo Mecket ot thrve dotomert vabses KHP

1002 parnpal’ - B8 pavcent of Jnel gampet)

—

-

BOLD ugred

] ' " ’
T b WRF vy ormats|
e st

Lhanr mawn of ity = 0 N
Castor Arn Of resshcinis = () 11667

Figure 2:Selected HRF model of minimum residuals
among the above nine model is showing in following

figure -
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Figure 3: Discrete signal of the HRF within FIR series.
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Figure 4: Selected HRF as weighted FIR basis.
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Figure 5: Various Stimuli regarding Voxels.
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IV. DISCUSSION AND CONCLUSION:

The three steps methodology provides a
valuable reduction in repetition time and makes it
shorter than that of fMRI scanner’s BOLD signal.
The modeled hemodynamic response function
within FIR 20 functions makes BOLD signal as a
high temporal resolution. Given the evoked BOLD
signal measured from a voxel during stimulus
presentation, along with the HRF for the voxel, and
the assumptions of FIR model framework, it is
possible to calculate the degree to which the
neurons in the voxel must be selective for each the
stimulus features in order to produce the measured
BOLD signal.
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