Scope of 3D Modeling in Medical Images- A Review
Diksha Kumari¹, Inchara Rao K S², Harshitha B R³, Charita T M⁴, Prof.Anitha⁵

Department of Computer Science and Engineering, DSCE.

ABSTRACT
Since 2D image data never gave the actual visualization of patient’s morphology in medical imaging, the doctors were detoured from the exact location of medical diagnosis which caused a lot of perplexity.

Time and again, doctors only had the 2D Image Data to visualise the internals of a blood artery in medical imaging, which never accurately depicted how a plaque would appear. They were unable to see the blood vessel in detail, and the quantity of clog that needed to be removed through surgery was unknown. The variety and complexity of medical image data, whether ultrasound, CT, or magnetic resonance imaging, makes detecting obstructions extremely difficult.

Many reconstruction approaches necessitate establishing the link between image slices. The results of these traditional techniques are very reliant on a variety of factors. As a result, constructing a model that accounts for all possible backdrop and foreground combinations is a difficult task. This is a difficult and time-consuming task, and successful repair is improbable. A detailed three-dimensional (3-D) representation of the internal organs is required for diagnostic and therapeutic applications.

As a result, this research provides an overview of novel approaches to converting 2D images. A thorough examination of existing methods and techniques for 2D to 3D reconstruction and modelling of medical images was conducted using various medical imaging techniques such as ultrasound, CT, and magnetic resonance imaging (MRI) in order to identify methods that can produce reliable and promising results.

Keywords: 3D modeling; 2D images; marching cubes; Dividing cubes; MRI; CT; Ultrasound; Image processing

I. INTRODUCTION
Carotid artery disease develops when these arteries narrow. This narrowing is caused by process of atherosclerosis. Atherosclerosis is the accumulation of fatty deposits, calcium, and other waste products within the arterial walls. Diseases in carotid arteries reduces the flow of oxygen to the brain and neck. A carotid ultrasound is used to detect narrowed carotid arteries, which can lead to stroke. The number of people dying from cardiovascular diseases is expected to rise to 23.3 million by 2030.

In the common carotid or internal carotid artery, increased intima medium thickness and vasavasorum density are linked to structural alterations or inflammation of the arterial wall.

Despite the fact that many imaging modalities for the visualisation of carotid artery pathology are available, they are all constrained by varying degrees of technical complexity, much alone potential side effects and expenses. The extent and shape of these plaques can help predict the risk of cardiovascular (CV) occurrences. As plaque size grows and the lumen narrows, the risk of CV events rises. This type of plaque, known as thin cap fibroatheroma, is susceptible to bursting.

When the cap ruptures, blood contacts the core lipid plaque, triggering a response that accounts for 60–80 percent of strokes. As a result, detecting and recognising susceptible plaques before cap rupture is critical in preventing ischemic stroke, myocardial infarction, and other vascular events.

The early diagnosis of plaque will assist in categorising patients as high-risk or low-risk. This will allow doctors to follow this up on patients based on their categorization. The classification of carotid artery plaque could aid in therapeutic decision-making and the development of pharmaceutical medications.

Physicians must view one region of the body with a specific issue to diagnose illness,
evaluate the current status, and appropriately select which treatment is the best for many diseases, such as malignancies. The information obtained from the body is also crucial for surgeons to identify the precise location of the lesion and correctly route their instruments to that location. As a result, image processing technologies can help practitioners locate the best solution.

Medical imaging is a technique for capturing the visual orientation of a specimen’s interior as well as the function of certain of its organs or tissues.

The carotid arteries are the major blood vessels channels that supply the body.

II. APPROACHES

i. 3D Visualization in Orthognathic surgery

In patients with jaw disharmony, orthognathic surgery tries to rectify disparities in the skeletal and soft tissues of the face to create both functional and aesthetically pleasing results.

Because the movements of soft tissues and the underlying bones are not proportionate, fixing these defects with orthognathic surgery does not necessarily result in an ideal soft tissue appearance. As a result, if face harmony is required, the final soft tissue modifications should be prioritised. The ability to predict how soft tissue will respond to skeletal changes aids in surgical motion of the osteotomized segments. This is essential for clear communication between the physician, dentist, and patient.

ii. A surgical simulation method for predicting face soft tissue deformation

A simulation system is nothing but a set of linear finite element method-based prediction of facial soft tissue. Surgeons can utilise the simulation system to get an approximation of facial look. The deformation model is built using an individual's patient data for both the skull and skin surfaces. 3D photography and 3D computed tomography (CT) pictures were used to collect the data. To simulate facial soft tissue deformation due to bone structural movement, a correspondence between a face mesh and a bone mesh is established. To allow for finite element analysis, our facial models are made up of tetrahedral elements. It is also possible to simulate changes in facial tissue induced by bone movement.

iii. Using Examples to Learn the Depth Technique for 2D-to-3D Conversion

System’s two primary components are a 3D registration framework and a 3D multi-random forest model.

vi. A three-dimensional tool for identifying and reconstructing a brain tumour.

This method for semantic image segmentation, which necessitates a high-level understanding of image components throughout the seed selection step, has proven to be very appealing. The tumour volume can also be estimated based on the calculations of these images.

This simplified approach was quantitatively evaluated against the Make 3D algorithm using a Kinect depth dataset. The suggested technique is a promising new option to 2D-to-3D conversion algorithms that require operator assistance. As a result, online 3D content repositories can be used to effectively convert 2D to 3D images.

iv. Reconstructing and Quantifying Carotid Arteries From 3-D Ultrasound Images

It is proposed that images captured using a 3-D ultrasound device be used to reconstruct the normal and diseased carotid artery bifurcation. It is provided a method for automatically analysing plaque and providing a set of quantitative size and shape parameters, including accepted clinical measures such as degree of stenosis. Following three-dimensional ultrasound collection, the vessel wall is reconstructed. The plaque in the internal...
carotid artery is then measured.

3. 3D Brain MRI Image Stroke Lesion Segmentation

A fully automatic stroke lesion segmentation system is being developed utilising 3D brain magnetic resonance (MR) data. The brain and face with blood and oxygen.

vii. Ultrasound three-dimensional reconstruction based on direct scan-line mapping

Because ultrasound only allows for a 2D view of 3D anatomy, this novel imaging method is gaining popularity.

Researchers used simulated 3D RF data to recreate a 3D ultrasound image from a typical simulated phantom. The scan lines of each RF data set were assigned to a volume. To ensure robustness and correctness, the values obtained were preferred over traditional approach. It was demonstrated that the task of reconstructing a 3D ultrasound image required less time and memory. The overall quality of the image was also preserved when compared to the traditional process.

viii. 3D brain model reconstruction from 2D MRI slices

Three distinct sliced MRI brain images were investigated. The image registration was implemented to these slices, and the fusion was finished in the end. The merged image included the entire complexity of the brain. These 2D slices were then used to construct the 3D model. A 3D map is created, and surface to volume construction is used to create the 3D model.

An efficient system for volume rendering of glioma tumours from segmentation is performed on 2D MRI datasets with user interactive control is provided by replacing the manual segmentation required in current methods.

Prior to surgery, a tumour volume assessment is essential for clinical follow-up. Tumor segments were automatically segmented from 2D MRI images using morphological filtering approaches. The segmented tumour slices were propagated and modelled using the appropriate software. To sum it up, tumour volume evaluation with manual segmentation of its contours is a time-consuming and error-prone procedure.

III. LITERATURE SURVEY

[1] proposed a semi-automatic method to obtain depth maps in required to convert a 2D image to 3D. To construct stereographic image pairings using cohesive depth map technology, the graph cut segmentation and the random walks algorithm were combined. The authors proposed a conversion strategy based on examples [2] as a follow-up to learning depth. They suggested a stereo rendering technique in which k image-depth pairings with visual contents resembling that of a 2D query to be translated were obtained using principally k nearest-neighbor (kNN) classification. These k matching depth fields were used for median filtering of depth fields. Finally, using cross-bilateral depth filtering, the median-fused depth fields were smoothed to remove variances.

Another learning-based technique [3] offered a method that involved a point mapping from local picture attributes to scene-depth, followed by a global estimation of a query's whole depth field straight from a library of pairs of image-depth using a regression algorithm.

[4] proposed techniques for detecting edges in 3D spaces. Gradient vector flow (GVF) is one such method for detecting edges in images by combining active contour methodologies and the snake method. Frangi et al developed the vassalless filter, which reduced unwanted white noise in images while preserving vessel structure. The fundamental ideas of FEM presented in [5] were applied to the solution of differential equations equations in 2D or 3D variables. This method creates a volumetric linearization of the structure using a 3D mesh.

Lorensen & Cline introduced marching cubes, often known as MC, as a well-known approach for triangular surface reconstruction in 1987. W. Narkbuakaew, S. Sotthivirat, D. Gansawat, P. Yampri, K. Koonsanit, W. Areepayolkij, W. Sinthupinyo, and S. Watcharabutsarakham examined this method [6], which used marching cubes and solved the time and memory considerations by sub sampling using the Visualization Toolkit's pipeline technique (VTK). Pre-processing, rebuilding, and showing were the three primary processes in the proposed approach.

[7] described numerous strategies for picture segmentation and denoising in an attempt to improve our understanding of carotid plaque morphology by focusing on the retrieval of 3-D shape and structural information. The first classification used in the assessment of plaques in ultrasound imaging was visual classification, which
was followed by ultrasound- image pre-processing and segmentation, which included image capture, normalisation, de-speckling, and segmentation procedures.

In [8, Loxlan W Kasa suggested a method for reconstructing 3D ultrasound images that requires less time and memory. A 3D ultrasound picture reconstruction was conducted using simulated 3DRF data.

The scan lines of each RF data were instantly mapped toward a target volume, then scan converted within in the volume. This method has been shown to be more reliable and accurate when compared to the traditional method. Barratt DC, Ariff BB, and Humphries KN [9] proposed a method for Construction and Estimation of the Carotid Artery Bifurcation from 3-D Ultrasound Images in an attempt to automatically examine plague and provide a set of quantitative values of size and form.

Vidhya K and Mala C. Patil proposed a method in which image registration was performed to different 2D photos that were utilised to generate 3D models in another study of 3D construction using 2D images. The surface to volume building was done using Spline transformation [10] after the 3D map was constructed. A completely automated stroke lesion segmentation system was developed using multiple Random Forests algorithms and 3D Registration [11].

S. Ananda Resmi and Tessamma [12] demonstrated an efficient method for volume rendering from segmented 2D datasets. A nearly fully method for segmentation and 3D graphics was proposed using morphological filtering approaches, volumetric evaluation, and manual segmentation of its outlines.

The use of a Seeded region growing segmentation technique, as well as automatic seed identification and design software, was demonstrated for reconstructing a 3D image from a set of 2D tumour images, as well as calculating the tumour volume [13].

A high-dimensional statistical shape analysis model for medical picture analysis is proposed in a study suggested by Heng huang, Fillia Makeddon, and Roderick McColl [14]. They proposed a method for organically describing shape parameters in matrices rather than pushing them into vectors as in earlier methods. Using such matrices, spatial correlation between points was obtained quite quickly. [15-16] created strategies for colour distance mapping and imaging in order to promote objective structural assessment and increase visual knowledge and communication with patients. Combining anatomy and imaging could help with pre-operative assessment and surgical planning. Table 1 lists a few techniques for ultrasonic segmentation and 3D modelling that have been developed.

<table>
<thead>
<tr>
<th>Sl.no</th>
<th>Authors</th>
<th>Methods/model</th>
<th>Algorithm</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cheng Sheng Hung, Chien Feng Huang, Ming Ouh young[17]</td>
<td>VOLUME RENDERING</td>
<td>Ray tracing, Fast rotational algorithm</td>
<td>The 3D images are constructed quickly with the help of speed-up methods.</td>
<td>It may become impossible to distinguish between distinct buildings with comparable densities merely by tweaking volume rendering parameters.</td>
</tr>
<tr>
<td>2</td>
<td>Xin Yang Jiao, ying Jin, Men gling Xu, Hui hui Wu[18]</td>
<td>Manual Segmentation.</td>
<td>Active Shape Model</td>
<td>It deforms the object iteratively to fit another example of the object in a new image.</td>
<td>It only employs shape constraints and does not make use of all of the available options. Information.</td>
</tr>
<tr>
<td>3</td>
<td>Carlos R. del Blanco, et al. [19]</td>
<td>Local Binary Patterns</td>
<td>Depth MRF method, Feedback Cascades algorithm, the Depth Transfer, the HOG based Depth Learning</td>
<td>An automated ML technique for reestablishing the structure of single images based on their similarity.</td>
<td>The effect of various methods of evaluation for complex images is not yet evaluated.</td>
</tr>
<tr>
<td>4</td>
<td>Tsung Han Huang, Rui Wang [20]</td>
<td>Boundary information conversion</td>
<td>Gaussian model, super pixel algorithm, Sobel edge detection</td>
<td>A five-segment scale was used to evaluate the depth maps in terms of overall depth quality, which was found to be precisely, visually satisfactory.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Somoballi</td>
<td>2D MRI</td>
<td>3D reconstruction</td>
<td>It allows us to gain insight into qualitative characteristics of the object that cannot be inferred from a single plane of sight,</td>
<td>The overall system performance for the segmentation of the IMC or plaque in the carotid artery has yet to be demonstrated.</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

In the medical field, 3D construction is a challenging problem to solve. Analyzing a 3D model aids in better diagnosis and boosts diagnosis accuracy. This paper presents an analysis of existing 3D ultrasound reconstruction methods and algorithms for various methods of transforming 2D ultrasound data into 3D images based on literature.

By developing efficient systems to evaluate the stages of plaque growth and composition, the accuracy of stroke and cardiovascular disease prediction can be improved. We chose studies that applied their proposed strategies to the problem of medical three-dimensional ultrasound image segmentation. The evaluation methods are described and compared in terms of evaluation methodologies, interactivity, and robustness.

We gathered a variety of approaches for segmenting 3D ultrasound images, as well as clinical application studies. Semi-automated methods outperformed automatic segmentation systems in terms of overall performance. Regardless of the fact that so many approaches to 3D image segmentation have been developed, a sufficient overall system performance for the segmentation of the IMC or plaque in the carotid artery has yet to be demonstrated, and this field remains open for future research. In image processing, there really is no standard 3D segmentation method for any purpose.

REFERENCES

[5] Xiaodong Tang, Jixiang Guo1(), Peng Li, and...

[11]. Ching-Wei Wang(*) and Jia-Hong Lee,“Stroke Lesion Segmentation of 3D Brain MRI Using Multiple Random Forests and 3D Registration”, Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan

[14]. Heng Huang, Fillia Makedon.” HIGH DIMENSIONAL STATISTICAL SHAPE MODEL FOR MEDICAL IMAGE ANALYSIS”. Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019 Roadrick McColl, Radiology Department, University of Texas Southern medical Center Dallas, TX, 75390

[16]. Hugo Santos Cunha , Cicero André da Costa Moraes , Rodrigo de Faria Valle Dornelles , Everton Luis Santos da Rosa .Accuracy of three-dimensional virtual simulation of the soft tissues of the face in OrtotOn Blender for correction of class II dentofacial deformities: an uncontrolled experimental case-series study .PMID: 33161500 .PMCID: PMC7648899. DOI: 10.1007/s10006-020-00920-0.

[18]. Xin Yang, Jiaoying Jin, Mengling Xu,Huibui Wu,Wanji He, Ming Yuchi, and Mingyue Ding, Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model.

[21]. Somoballi Ghoshal, Sourav Banu , Amlan Chakrabarti, Susmita Sur-Kolay, Alok Pandi. 3D reconstruction of spine image from 2D MRI slices along one axis