

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 635

A Cluster Model of Collaborative Vocations

for Managing Software Security

Vulnerabilities at the Source Code Level

Julius N. Obidinnu, S. O. O. Duke
Department of Computer Science, University of Cross River State, Calabar, Nigeria.

Department of Computer Science, University of Cross River State, Calabar, Nigeria.

--- --------------

Date of Submission: 25-08-2024 Date of Acceptance: 05-09-2024

-- -----------------------------

ABSTRACT: Software security mishaps have

disastrous effects on businesses, including adverse

publicity, which always triggers a sharp drop in the

valuation of associated software development

companies. These mishaps occur due largely to the

exploitation of security vulnerabilities in source

code. This paper posits that the path to creating

secure software begins by rigorously testing the

source code for vulnerabilities. The paper further

posits that such source code testing requires the

expertise of a range of skilled human software

security experts that should span the entire software

development life cycle. However, there is a lack of

software security human experts in the software

engineering field in relation to the abundant

number of software developers specialized in

various coding technologies. Consequently, the

typical software development projects do not

necessarily have available software security human

experts to complement the conventional

developer’s lack of knowledge (and interest) in the

domain. Furthermore, there is minimal attention

towards the training of these set of skilled experts.

This paper therefore presents a vulnerability

patch/alarm cycle model, which clarifies that

deploying software without managing source code

security vulnerabilities remediation exposes it to a

deluge of exploitative attacks, requiring patches,

which oftentimes, introduces additional security

vulnerabilities, and the cycle continues. Then, the

cluster model of collaborative software security

vocations is also presented to depict a methodology

for linking the distinct range of skilled human

software security experts and their functions in

managing source code security vulnerabilities

across the phases of an application’s lifecycle. The

model provides a vision and a process to change

the focus, and enhance the development of more

secure software systems.

KEYWORDS: Internet, Source Code,

Vulnerability, Software Security, Career Cluster,

Security Architect, Security Auditor

I. INTRODUCTION
Notwithstanding the efforts at stemming

the tide, stakeholders are in agreement that

software security threats remain an ongoing

conundrum[1]. In fact, the highest number of

information assets exposed due to security breaches

in the United States of America occurred in 2021,

which was the last year in the survey [2].

Associated with these breaches are the disastrous

effects on businesses, including adverse publicity,

which always triggers a sharp drop in the valuation

of associated software development companies. It

is established that the root cause of majority of the

software security breaches is the exploitation of

vulnerability in the source code of deployed

software [3]. Meanwhile, the cheapest and most

effective approach to resolving software security

issues is to identify the defects early in the software

development life cycle [2]. This paper posits that,

vulnerability in source code go unnoticed, and gets

deployed, because software security is under-

theorized, hence, programmers under-emphasize it

in the software development process. Besides,

minimal attention is given to the training of the set

of skilled experts in this domain. Consequently,

there is a dearth of personnel who are sufficiently

skilled in resolving source code security

vulnerabilities. Looking to the future therefore,

there is a need to draw attention to the training of

human experts for employment in multiple areas of

source code security-oriented testing skills that

meets a wide variety of requirements across the

entire software development life cycle (SDLC).

This will lead to the availability of security

conscious and skilled personnel to be coopted

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 636

across the phases of the SDLC to undertake the

security-oriented tasks using standardized

methodologies.

This paper presents two models. The first

of the models is a vulnerability patch/alarm cycle

model, which captures a significant aspect of the

subsisting source code security vulnerabilities

management process. This model makes it clear

that deploying software without managing source

code security vulnerabilities exposes it to a deluge

of exploitative attacks, requiring patches, which

oftentimes, introduces additional security

vulnerabilities, and the cycle continues. However,

applying security-oriented patches over and over

again, as though systems administrators had

nothing else to do, is never going to give us a

secure internet. The second is a cluster model of

collaborative software security vocations, which

introduces a methodology for interfacingthe

distinct range of skilled human software security

experts and their functions necessary for managing

source code security vulnerabilities across the

phases of applications’ lifecycle.In practice, the

model seeks to achieve more secure systems, by

making software security an integral part of every

phase of an application’s overall lifecycle. To

achieve this, the model identifies the actors and

functions that will promote interoperability through

baseline and enhanced capabilities across the

SDLC.

The objective of this paper is to evoke

awareness of the need to expand the focus, and the

process to guide the change towards modeling,

implementation, and deployment of software with

security in mind across the SDLC. Career clusters

are groups of occupations and industries that have

in common a set of foundational knowledge and

skills [4]. Clustering seeks stability and confidence

by developing a set of professionals that share a

wide range of skills and provide backup expertise

that will ensure business continuity.

II. METHOD
The paper conducts a systematic literature

review, which exposes the need to use the

instrumentality of creating a software development

security career cluster, to draw attention to the

software security work domain, towards increasing

the number of software security experts in relation

to deploying more secure software. The paper then

presents a vulnerability patch/alarm cycle model,

which captures a significant aspect of the subsisting

source code security vulnerabilities management

process and the weaknesses inherent therein. Next,

the paper presents a cluster model of collaborative

software security vocations, which introduces a

methodology that links the actors and functions

necessary for managing source code security

vulnerabilities across the phases of applications’

lifecycle. Finally, conclusions are drawn from the

presentations.

III. LITERATURE REVIEW
Hoglund and McGraw in [5] posit that the

path to creating a secure application begins by

rigorously testing source code for all vulnerabilities

and ensuring that use of the application does not

allow for the compromise of data privacy and

integrity. A good starting point would be tools that

can be applied directly to the source code to solve

or warn about security vulnerabilities. However,

the use of security testing tools by unskilled

software security human experts is defective, since

the scope (knowledge base) of each tool is as

good/bad as the limited knowledge of its

developers [6]. Besides, the tools provide false or

true positive/negative alerts to the testers, which

require skilled software security human experts to

discern their veracity before accepting or rejecting

them. Meanwhile, there are diverse areas to watch

out for in software security. The testing tools can

therefore only assist in tracking security issues but

cannot replace the human expert, who should

identify and execute the appropriate solution paths.

It is therefore, inappropriate to entrust all the

approaches to resolving software security issues

into the hands of software security unskilled

programmers that may not effectively discern

between true/false positive/negative alerts from the

automated tools.

Modeling, implementation, and

deployment of software with security in mind

requires the early involvement by business users,

project managers, applications developers, as well

as information security practitioners across the

SDLC [7]. Early involvement of a variety of skilled

human software security experts helps to catch

threats across the SDLC [8]. This requires that a

software security modeling expert should be

coopted at the software specification phase, to

proactively contribute software security

architectural blueprint [9]. This enables potential

security issues to be analyzed early with

remediation prospects, preventing a much costlier

fix down the line. The blueprint further provides

the dimensions for validating the extent to which

the end-product can be proven to be secured [10].

SDLC processes have been around for

years, but security considerations have not always

been incorporated into them [7]. Rather, security

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 637

testing tools are usually deployed towards the end

of the projects, possibly by one person, to

determine the extent to which a potential end

product is secured. This situation prevails because

there is a lack of security experts in the software

engineering field, while there exists an abundance

of software developers, who are experts in various

coding technologies [11]. Consequently, there is a

knowledge gap between security experts and

software developers, since only few software

developers follow the secure coding best practices,

even though most of the software security

vulnerabilities are caused by well-known mistakes

[11]. For these reasons, the typical software

development projects do not necessarily have

available security expertise to complement the

ordinary developer’s lack of knowledge (and

interest) in the area. There is need therefore, to take

steps towards increasing the number of software

security experts in relation to software developers.

Career clusters contain occupations in the

same field of work that require similar skills.

Students, parents, and educators can use career

clusters to help focus education plans towards

obtaining the necessary knowledge, competencies,

and training for success in a particular career

pathway [12]. They provide a good way to start

thinking about careers. They provide an organized

way to look at occupations in a domain and create a

plan to move from school into a good-paying job

[13]. However, software security career cluster has

continued to be underemphasized in the scheme of

computing and information technology. For

instance, the Information & Technology domain of

work, which is one of the sixteen career clusters

recognized by the U.S. Department of Education

did not include software security as a distinct

career field, but security was mentioned sparingly

in terms of Networks and Databases[14]. This trend

is the same in other bibliographies [15]. There is

need therefore, to use the instrumentality of

creating a software development security career

cluster, to draw attention to this work domain,

towards increasing the number of software security

experts in relation todeploying more secure

software.

IV. THE VULNERABILITY

PATCH/ALARM CYCLE
The vulnerability patch/alarm cycle

model, which captures a significant aspect of the

subsisting source code security vulnerabilities

management process is presented in Figure 1.

Figure 1 depicts the relationships linking the actors

and their roles in the patch/alarm cycle of source

code security vulnerability management.

Figure 1: Actors and their Functions in the Patch/Alarm Cycle of Source Code Security Vulnerability

Management

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 638

The essential features in Figure 1 are listed below:

1. Software is deployed with firewalls, but

without managing source code vulnerabilities;

2. An inquisitive person uncovers and discloses a

vulnerability in the deployed software;

3. Unethical hackers quickly analyze the

vulnerability behavioursand use it to launch

attacks against the software;

4. Several businesses that rely on the attacked

software experience interruptions;

5. The software developers at the organizations

that produced the product (and the

vulnerability) are deluged with phone calls and

mails from the public, wanting to find out what

is going on;

6. The software developers in affected

organizations analyze the vulnerability,

develop a fix, test the fix in a controlled

environment, and release the fix to the

community of users who rely on the software;

7. When a patch is published, some of the users

will obtain, test, and apply it. But inevitably,

many of the affected systems will never be

patched during the lifetime of the vulnerability,

or will receive the patch as part of major

version upgrade;

8. Weeks or months go by, and a piece of

malicious software is released to the internet.

This software automates the exploitation of the

vulnerability on unpatched systems spreading

without control across a large number of sites.

Although many sites have patched their

systems, many have not, and the resulting

panic once again causes a great deal of

business interruption across the internet.

9. Using this practice, many of the patches

themselves introduce additional security

vulnerabilities.

Applying security-oriented patches over and over,

as though systems administrators had nothing else

to do, is never going to give us a secure internet-

based infrastructure.

V. CLUSTER MODEL OF

COLLABORATIVE SOFTWARE

SECURITY VOCATIONS
We modify the model in Figure 1, with a

view to including the actors and functions

necessary for managing source code security

vulnerabilities across the phases of an application’s

lifecycle. We consider that the SDLC, from

inception to deployment, comprises of the initial

architecture, detailed design, implementation

(coding), and deployment. This consideration

informs the cluster model of collaborative software

security vocations, as presented in Figure 2. The

peculiarities of a cluster model have been presented

in earlier sections of this paper.

Figure 2: Cluster Model of Interfacing Software Security Vocations Showing Actors and their Functions in

Managing Security Vulnerabilities across Application’s Lifecycle

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 639

The cluster model in Figure 2 comprises

of a set of five career specializations, including: (i)

Software Security Analyst/Researcher, (ii)

Software Security Architect, (iii) Conventional

Programmer, (iv) Security-Aware Programmer, and

(v) Software Security Auditor.

The model begins with and requires that a

software security analyst/researcher, who also

performs the functions of researching into hackers’

attack methods and their mitigations, identifies the

software security requirements of a potential

system. The software security requirements of a

potential system must be designed to fit into the

overall design of a potential software, similar to

how electrical and mechanical designs are made to

fit into the design of a building plan. The security

requirements are then translated into an initial high

level software security architecture by a software

security architect. This function of the software

security architect may also be performed by the

software security analyst. In other words, one actor

may be skilled in performing the functions of more

than one role; hence, may be authorized to conduct

the functions in those roles. However, an actor

should not be overburdened with too many

functions, which may derail the benefits accruable

from the division of labour and specialization of

functions. The software security architect further

translates the initial software security architecture

into lower-level design details of the system,

including entity and logical security requirements

for the database, business processes, input/outputs,

as well as the data flows.

Next, the lower-level design details are

then delivered to the conventional programmer,

who translates them into source code using coding

technologies. The source code produced at this

stage requires to be screened for vulnerabilities;

hence, it is delivered to a software security auditor,

who applies personal experience and relevant tools

to ethically hack (attempt to break into) the

software as a way of evaluating the intruder threat.

This scheme is similar to having independent

(eternal) auditors come into an organization to

verify the book-keeping records; hence, the

software security auditor applies the same tools and

techniques of the malicious attackers, but will

neither damage the target system nor steal

information. Considering the nature of the work, a

typical software security auditor should be very

strong in security-oriented programming,

databases, and computer networking skills and

sufficiently experienced in these businesses. These

qualifications and tools are then utilized to

determine: (i) what an intruder can see on the target

system, (ii) what the intruder can do with the

information seen, (iii) whether anyone at the target

system can notice an intruder’s attempts or

successes, (iv) what information assets that are

adequately protected, and (v) what the assets are

being protected against. After screening the

software, the software security auditor provides a

report of the vulnerabilities found and instructions

on how to remedy them, and then delivers it to the

security aware programmer, who remedies the

vulnerabilities as reportedly found in the source

code. Finally, security aware programmer translates

the remedied source code into its equivalent

executable code, and deploys it for use.

VI. CONCLUSION
Removing all software security threats and

vulnerabilities may not be practicable, but through

sustained efforts they can be brought to their safest

limits. The notion of treating software security as

prophylaxis, whereby it is considered necessary

only at the point preceding deployment of an

application or the installation of a firewall that

guards its environment should be discarded.

Deploying software without managing source code

security vulnerabilities exposes it to a deluge of

exploitative attacks, requiring patches, which

oftentimes, introduces additional security

vulnerabilities, and the cycle continues. Applying

security-oriented patches over and over again, as

though systems administrators had nothing else to

do, is never going to give us a secure internet.

To achieve more secure systems, security

considerations need to be an integral part of every

phase of an application’s lifecycle rather than being

only an add-on feature of software. Making

software security an integral part of an

application’s overall lifecycle helps to detect

exploitable vulnerabilities early on in the process.

Minimizing the presence of these vulnerabilities in

software reduces the risks of their associated

adverse effects, and improves the system’s ability

to react promptly in detecting malicious signals,

deterring malicious exploitation, and protecting the

information assets .Making a potential software to

be security-aware at each of the SDLC phases

should be a collaborative process, whereby human

software security experts at each phase have the

opportunity to develop and contribute a shared

understanding of security requirements and

options. Such increased awareness strengthens

security, as it makes more people compatible with

user needs.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 635-640 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608635640 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 640

REFERENCES
[1]. D. E. Bambauer, 2021,“Conundrum.

Minnesota Law Review”: 394. Retrieved

March 18
th

, 2021 from

https://scholarship.law.umn.edu/mlr/394

[2]. G.Huang, 2023, “Designing Security into

Software Systems using Threat

Modeling”, Advanced Information

Security Sandia National Laboratories.

[3]. J. N. Obidinnu andO.S. Duke, 2013,

“Deploying Security-Aware Software

Systems Using Source Code

Vulnerabilities Analysis”, IEEE: African

Journal of Computing & ICT, Vol. 6. No.

5, December 2013, pp. 171-180.

[4]. N. A. Jankowski,C. L. Kirby, D. D. Bragg,

J. L. Taylor, andK. M. Oertle,2009,

“Illinois’ career cluster model”, Urbana-

Champaign, IL: OCCRL, University of

Illinois at Urbana-Champaign.

[5]. G. Hoglund andG. McGraw, 2004,

“Exploiting Software: How to Break

Code”, Boston: Addison-Wesley

Professional.

[6]. J. S. Valacich andJ. F. George, 2020,

“Modern Systems Analysis and Design

(Eight Edition)”, Boston: Pearson

Education, Inc.

[7]. GCN: Government Advisory Council

Executive Writers Bureau,2024, “How a

process model can help bring security into

software development”, Retrieved June

25
th

, 2024 from:

https://www.google.com/url?sa=t&rct=j&

q=&esrc=s&source=web&cd=&cad=rja&

uact=8&ved=2ahUKEwji38GZkIzyAhUI

xIUKHb4fAbk4FBAWegQIChAD&url=h

ttps%3A%2F%2Fgcn.com%2Farticles%2

F2010%2F03%2F03%2Fics2-process-

model-for-software-

security.aspx&usg=AOvVaw13bxvmbJye

X3ZxlhY8uJmJ

[8]. A. Shostack,2014, “Threat Modeling:

Designing for Security”, Indianapolis:

John Wiley & Sons.

[9]. N. Shevchenko, T. A. Chick, P.

O’Riordan, T. P. Scanlon, andC. Woody,

2021, “Threat Modeling: A Summary of

Available Methods”, Software

Engineering Institute, Carnegie Mellon

University.

[10]. W. J. Rapaport, 2023, “Philosophy of

Computer Science”, DRAFT Version of

26 January 2023.

[11]. D. G. Spampinato, E. Hagen, E. T.

Baadshaug, K. Krister, andK. S. Velle,

2021, “SeaMonster: Providing tool

support for security modeling”. NISK-

2021 conference.

[12]. R. Pico-Saltos, P. Carrión-Mero, N.

MontalvánBurbano, J. Garzás, &A.

Redchuk,2024, “Research Trends in

Career Success: A Bibliometric Review”,

Sustainability 2024, 13, 4625.

[13]. Career Exploration, “Career Clusters”,

Retrieved July 15
th

, 2024 from

http://www.breitlinks.com/careers/career_

clusters.htm

[14]. U.S. Department of Education,“Career

Cluster-info”, Retrieved July 15
th

, 2024

from

http://www.breitlinks.com/careers/career_

pdfs/CareerCluster-info.pdf

[15]. O*NET OnLine, “Browse by Career

Cluster”, Retrieved July 12
th

, 2024 from

https://www.onetonline.org/find/career?c=

11&g=Go

https://scholarship.law.umn.edu/mlr/394
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwji38GZkIzyAhUIxIUKHb4fAbk4FBAWegQIChAD&url=https%3A%2F%2Fgcn.com%2Farticles%2F2010%2F03%2F03%2Fics2-process-model-for-software-security.aspx&usg=AOvVaw13bxvmbJyeX3ZxlhY8uJmJ
http://www.breitlinks.com/careers/career_clusters.htm
http://www.breitlinks.com/careers/career_clusters.htm
http://www.breitlinks.com/careers/career_pdfs/CareerCluster-info.pdf
http://www.breitlinks.com/careers/career_pdfs/CareerCluster-info.pdf

