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ABSTRACT: The widespread use of technology 

has led to an increase in technostress which is a 

phenomenon where individuals experience stress 

and anxiety due to their interactions with 

technology. As social media platforms become 

increasingly integral to daily life, detecting 

technostress from online interactions has become a 

pressing concern and an avenue to enrich the 

research in the area of detecting technostress. This 

study evaluates the performance of a meta learner 

strategy using Support Vector Classifier following 

the implementation of selected base models on X 

(Twitter data). Also, the study investigated the 

effectiveness of a feature extraction technique for 

the improvement of the model performance through 

data preprocessing including the use of 

lemmatization and polarity scoring technique. The 

study made use of the dataset of X posts 

(Sentiment140) obtained from the Standford 

University. The extracted features were used to train 

and evaluate four base models: Random Forest 

(RF), Extreme Gradient Boosting (XGB), Gradient 

Boosting (GB), and Light Gradient Boosting 

Machine (LGBM). The results of the base models 

were then used as meta features for the meta learner 

strategy. The performance of the stacked ensemble 

shows that the meta learner strategy improved 

substantially the detection of technostress with 

improved performance across the evaluation metrics 

such as accuracy, precision, recall, f1-score, and 

Kappa score values of 97.03%, 96.88%, 93.92%, 

91.63%, and 87.60% respectively.  The results 

highlight the importance stack ensembling in 

improving model performance; contributes to the 

development of more effective technostress 

detection systems and provide insights into the 

application of machine learning algorithms for 

analysing online interactions. 

KEYWORDS:Random Forest (RF), Extreme 

Gradient Boosting (XGB), Gradient Boosting (GB), 

and Light Gradient Boosting Machine (LGBM, 

Meta-Learner, Stack Ensemble. 

 

I. INTRODUCTION 
The contemporary digital age is replete 

with the ubiquitous integration of technology in 

human daily lives and activities [1], [2], [3]. Human 

beings are in an era of connectivity [4], search for 

convenience [5], and pursuit of efficiency [6]. 

Connectivity as a goal in a global village is fuelled 

by the drive for meaningful interactions; the 

convenience goal is driven by the need for a better 

service experience and the pursuit of efficiency is 

for productivity and results. Technostress manifests 

through symptoms like anxiety, fatigue, and 

cognitive overload, which can have significant 

impacts on an individual's well-being. Detecting 

technostress is important to achieve timely 

interventions and improve digital health outcomes. 

Prior research on technostress detection has 

primarily focused on workplace settings, the use 

questionnaires and self-reports to detect stress [7], 

[8], [9], [10], [11], [12], [13], [14]. However, with 

the increasing availability of social media data, 

researchers have begun exploring automated 

methods for detecting stress/technostress through 

text analysis and machine learning [15], [16]. The 

proliferation of digital technology has led to the 

emergence of technostress which is a phenomenon 

where individuals experience stress due to their 

interaction with technology. Research has shown 

that for individuals physical symptoms indicative of 

technostress include increased heart rates, 
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cardiovascular disorders such as hypertension and 

coronary heart diseases, gastrointestinal disorders, 

irritable bowel syndrome, gastritis, muscle tension 

pains, tingling in the limbs, insomnia, and 

sleepwalking, headaches, chronic fatigue, sweating, 

cervical pain, hormonal and menstrual disorders, 

and stress-related skin disorders. Furthermore, 

individuals often experience mental symptoms 

which impact cognition and behaviour which 

include irritability, depression, decreased sexual 

desires, crying spells, and apathy [13], [17], [18]. 

Attempts to categorize the various ways in 

which technostress has presented itself have given 

rise to variants of technostress creators such as 

techno-overload, techno-invasion, techno-

complexity, techno-uncertainty, and techno-

insecurity. Techno-overload presents when the use 

or introduction of technology overtly or covertly 

increases the workload of an individual or demands 

that they work at a pace that is too demanding for 

them. Techno-invasion implies the infiltration of 

technology into the private space of people and their 

persistent feeling of the need to be constantly 

connected as a result of the ubiquitous nature of 

technology. Techno-complexity speaks to the 

intimidating or daunting experience that stems from 

the increasing level of needed learning, skills, and 

expertise required to keep pace with technological 

inventions and innovations that are finding their way 

into everyday life and workspace [19]. Techno-

uncertainty on the other hand is triggered by the 

short life cycle and fast pace of changing versions or 

upgrades of some technologies which leave people 

in an unsettling state of not knowing which 

technology to specialize in [20]. Furthermore, 

techno-insecurity connotes the negative feeling that 

comes with people thinking that the introduction of 

technology will lead to job loss either due to the 

introduction of technology itself or people who are 

better at the technology coming to replace them 

[21].  Essentially, Technostress manifests in a range 

of negative emotions and other stress-related 

responses induced by the relentless use of digital 

tools and applications. While technology 

undoubtedly enriches our lives, it also introduces 

new stressors and complexities impacting work and 

mental health. 

There is urgent need to enhance 

technostress detection in order to maintain healthy 

mental health and productivity. While various 

machine learning models have been applied to text 

classification tasks [22], [23], [24], [25], their 

application to technostress detection remains 

underexplored. This paper presents a meta learner 

strategy to improve the detection of technostress 

sequel to the training and evaluation of base models 

(Random Forest (RF), Extreme Gradient Boosting 

(XGB), Gradient Boosting (GB), and LightGBM 

(LGBM) whose prediction was used as meta 

features in stacking ensemble using Support Vector 

Classifier as a meta learner. This approach combines 

the base models to enhance the accuracy of 

technostress detection. 

 

II. ENSEMBLE MACHINE LEARNING 

AND STAKING 
Ensemble Machine Learning technique 

leveraging on the synergy provided by the 

combination of two or more individual machine 

learning models. This integration of two or more 

models (which might be homogenous or 

heterogenous) enables overcoming some of the 

inherent limitations or weaknesses in individual 

models. Some of these limitations include bias, 

errors and variance. 

Ensemble Machine learning algorithm 

types spans those that can be described as the 

traditional machine learning algorithms to those that 

can be put together based on ensemble principles. 

Table 1 discusses some of the types of the popular 

ensemble machine learning such as bagging, 

boosting, stacking, Voting and Blending with their 

peculiarities while highlighting their strength and 

weaknesses. 

 

Table 1. Types of ensemble machine learning 

T
y

p
es

 

D
es

cr
ip

ti
o

n
 

S
tr

en
g

th
s 

W
ea

k
n

es
se

s 



 

        
International Journal of Advances in Engineering and Management (IJAEM) 
Volume 7, Issue 03 Mar. 2025,  pp: 24-34  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-07032434                |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 26 

B
a

g
g
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g

 

Combines predictions from 

multiple models trained on 

different random subsets of the 

training data, often using 

bootstrapping (sampling with 

replacement). 

Reduces variance, 

Effective for 

high-variance 

models like 

decision trees, 

Robust against 

overfitting 

Less effective for reducing bias, 

requires many models, 

increasing computational cost 

B
o

o
st

in
g

 

 

Sequentially trains models, with 

each model attempting to correct 

the errors of its predecessor, often 

with weighted voting. 

 

Reduces bias, 

Increases 

accuracy with 

weak learners, 

Handles complex 

datasets well 

 

Prone to overfitting, more 

computationally intensive, 

Sensitive to noisy data 

S
ta

ck
in

g
 

 

Combines predictions from 

multiple base models by using 

them as input features for a meta-

model, which makes the final 

prediction. 

 

Leverages diverse 

models, Reduces 

overfitting, 

Captures complex 

relationships, 

highly flexible 

 

More complex to implement, 

requires careful model 

selection, computationally 

demanding 

V
o

ti
n

g
 

 

Aggregates predictions from 

multiple models using majority 

voting (for classification) or 

averaging (for regression). 

 

Simple to 

implement, 

Improves 

accuracy, 

Effective with 

diverse and 

complementary 

models 

 

Limited ability to reduce bias, 

May underperform compared to 

more sophisticated ensembles 

B
le

n
d

in
g

 

 

Similar to stacking but uses a 

holdout dataset to generate 

predictions for the meta-model 

instead of cross-validation. 

 

Simpler than 

stacking, reduces 

risk of overfitting, 

Easier to 

implement 

 

May not be as robust as 

stacking, Limited data used for 

training meta-model 

 

The choice of staking for this paper was 

informed by its flexibility especially as regards 

accommodating heterogenous models, robustness 

against overfitting and its ability to cope with some 

of the limitations inherent in the individual models. 

Since the problem at hand is a classification 

problem the choice of Support Vector Classifier was 

arrived at as it performed better than when 

experimented with Random Forest as the meta 

learner. 

The base models carefully selected for this 

work are RF, GB, XGB and LGBM. Their choice 

was informed by their performance as seen in 

literature and in consideration of the limitation of 

the number of base models that could be used due to 

the constraints in resources such as memory. They 

are further explained in some details as follows: 

 

a. Random Forest (RF) 

Random Forest is an ensemble learning 

algorithm that combines multiple Decision Trees to 

improve the accuracy and robustness of the model. 

It trains each tree on a random subset of features and 

instances, by aggregating the predictions of all trees 

the final prediction is made. Figure.1 depicts the 

structure of Random Forest. 
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Figure. 1 Architecture of a Random Forest Model [26] 

 

b.  Gradient Boosting (GB) 

Gradient Boosting is an ensemble learning 

algorithm that combines multiple weak models to 

create a strong predictive model. The algorithm 

trains each model on the residuals of the previous 

model, and the final prediction is made by 

aggregating the predictions of all models. Figure.2 

depicts Gradient Boosting model. 

 

 
Figure 2. Architecture of Gradient Boosting Model[27] 

 

c.  Extreme Gradient Boosting (XGB) 

Extreme Gradient Boosting is an optimized 

version of Gradient Boosting that uses a more 

efficient algorithm to handle large datasets. It feeds 

the residual from tree-1 to  tree-2 so as to reduce the 

residual and this continues depending on the number 

of trees involved. XGB also provides several 

hyperparameters that can be tuned to improve the 

performance of the model. Figure. 3 depicts the 

workings of Extreme Gradient Boosting. 

 



 

        
International Journal of Advances in Engineering and Management (IJAEM) 
Volume 7, Issue 03 Mar. 2025,  pp: 24-34  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-07032434                |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 28 

 
Figure 3. Structure of Extreme Gradient Boosting Model[28] 

 

d. Light Gradient Boosting Machine (LGBM) 

Light Gradient Boosting Machine is a fast 

and efficient implementation of Gradient Boosting 

that uses a histogram-based algorithm to handle 

large datasets. LGBM is a highly scalable algorithm 

that can handle massive datasets, and it is often used 

due to its speed and accuracy. It is a decision tree-

based model that increases the model efficiency and 

enhances predictability performance while reducing 

the memory usage. This is also possible because 

LGBM provides several hyperparameters that can 

be tuned to improve the performance of the model. 

Figure.4 shows the working of Light Gradient 

Boosting Machine. 

 

Figure 4. Architecture of Light Gradient Boosting Machine Model[29] 

 

.  
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III. RELATED WORKS 
Twitter has become a mine for researchers 

in recent times especially when it revolves around 

emotion analysis. In their work [30], they looked at 

the use of SA and machine learning during critical 

events such as natural disasters and social 

movement using Bayesian Network Classifiers. 

They also adopted Bayes Network factor to enable 

them to yield a more realistic network. Comparing 

Bayes factor to Support Vector Machine and 

Random Forest, Bayesian network performed better 

in the case of dataset 2 while SVM machine 

performed better in the case of dataset 1. The 

researchers concluded that Bayesian net-work is 

preferable because SVM and RF are Blackbox 

models making it difficult to interpret while this 

limitation is partially addressed in the Bayesian 

Network. 

Cristian, Pilar, Joan and Luis [31] analysed 

the evolution of technostress using a mapping 

approach. While reviewing scientific literatures 

from 1982 to 2017, they look at the development of 

technostress and the trends; they further performed a 

bibliographic analysis of 246 Scopus indexed 

record. They were able to find that there is a high 

level of technostress among rapidly growing 

economies such as China, Indonesia, India and 

Malasia. Today, this assertion, can also be made 

about many parts of the world as technology 

penetration is on the rise. 

Mohamed et.al in their work managing 

technostress using data mining [32] emphasised that 

data mining provides a basis for technostress 

detection. They developed two models Decision 

Tree and Random Forest which achieved 59.1% and 

88.7% accuracies respectively. Another study by 

Klose et. al[33] attempted to classify technostress 

using machine learning on X data. They reported 

that the base models they used performed better than 

the Deep Neural Network models that they had 

developed except for the simple neural network 

which outperformed them with 92% accuracy. The 

One LSTM and Two LSTM performed poorly with 

33% and 39% respectively. Another study on 

technostress prediction used Neural Network-based 

multi-layer perceptron (MLP) classifier with 

principal component analysis (PCA) and reported 

that it outperformed conventional ML algorithms, 

achieving a 71% classification accuracy as well as 

over 70% precision, re-call, and F1-score [34]. 

These studies show that there is room for 

improvement of technostress detection. 

Machine learning models, particularly 

those used as base models in ensemble techniques, 

are crucial for improving technostress detection 

[35], [36], [37]. Common base models utilized in 

ensemble learning include Decision Trees, Support 

Vector Machines (SVM), and Naive Bayes. Each 

model has its strengths and limitations in handling 

social media data. Decision Trees are simple and 

interpretable but may over-fit when dealing with 

noisy X data. Support Vector Machines (SVM) offer 

robustness to overfitting and perform well with 

high-dimensional data, making them suitable for 

text classification tasks. Naive Bayes works well 

with large datasets, but its assumption of feature 

independence may limit its effectiveness in 

capturing complex patterns in technostress-related 

tweets. However, Ensemble learning, which 

combines multiple models has been shown to be 

particularly effective in similar contexts. The use of 

Ensemble techniques like Random and Gradient 

Boosting ride on the strengths of individual base 

models while mitigating their weaknesses. For 

instance, Random Forests which is an ensemble of 

Decision Trees handle noisy data better and reduces 

overfitting. The use of other variants of ensemble 

learners like staking can further improve the 

accuracy of prediction. 

This work builds on these foundations by 

leveraging stack ensemble learning to improve 

detection accuracy. However, we first evaluate 

selected base models for technostress detection and 

thereafter implemented the stack ensemble using 

SVC as the meta learner. 

 

IV. METHODOLOGY 
Figure 5 shows the conceptual model of the 

system starting with obtaining the dataset, 

preprocessing activities, using Beautifulsoup and 

regular expression to take care of irregularities in 

the text such as abbreviations and html tags, 

employing sentiment analysis and natural language 

processing techniques such as lemmatization and 

polarity scoring in order to proper contextualize 

technostress in the dataset and ensure appropriate 

labelling of the data. Following these, the research 

experimented with various data split ratios to arrive 

at the most effective. However, it was discovered, as 

shown in table 2, that there is no conspicuous 

difference in the performances in the split ratios as 

they relative performed well for all the base models. 

Hence the work stock with 80:20 split ratios for 

training and test as they are one of the standard 

splits often in use. The base models were then 

trained (usually referred to as level 0 in the scheme 

of stacking). Their performance in the detection of 

technostress was then stored in a data frame the 

result of which became meta features for the 

stacking (usually referred to as level 1 in the scheme 

of staking). The meta features were used in the 

training of the meta learner and the result was 
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evaluated and compared with those of the base 

models. 

 

 

Figure 5: Conceptual Model of the System 

 

Table 2.  Base Model Training Performance Base on Accuracy 

Across all the Split Ratios 

Base Models 

Split Ratio RF GB XGB LGBM 

70:30 100 96.50 91.85 80.89 

75:25 99.98 96.53 91.72 80.31 

80:20 100 96.66 91.40 80.89 

90:10 99.99 96.64 91.02 81.51 

 

V. RESULTS 
Following the preliminary activities 

necessary for data preparation and preprocessing 

such as checking for null values, handling 

stopwords, special characters, punctuation marks; 

carryout tokenization, lemmatization and feature 

extraction, the stacked ensemble model was 

designed and implemented. 

Table 3 shows the results are the outcome 

of the evaluation of the base models. Considering 

accuracy, Random Forest performed the most with 

88.03% followed by Extreme Gradient Boosting, 

Gradient Boosting and Light Gradient Boosting 

Machine. On precision, Random Forest performed 

the most with 85.98% followed by Light Gradient 

Boosting Machine, Extreme Gradient Boosting and 

Gradient Boosting. On recall, Random Forest 

performed the most with 85.68% followed by 

Gradient Boosting, Extreme Gradient Boosting and 

Light Gradient Boosting Machine. On F1 Scores, 

Random Forest performed the most with 85.79% 

followed by Gradient Boosting, Extreme Gradient 

Boosting and Light Gradient Boosting Machine. 

On kappa statistic, RF performance the most as 

well with 79.81%, followed by XGB, GB and 

LGBM. It is observed that Random Forest 

outperformed all the other ensemble models in all 

the metrics. 
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Table 3.  Performance Evaluation Across Ensemble Models 

Base Models 

Metrics RF GB XGB LGBM 

Accuracy 88.03 84.53 84.89 81.85 

Precision 85.98 83.59 83.86 84.53 

Recall 85.68 82.98 81.75 81.14 

F1 Score 85.79 83.89 82.82 80.38 

Kappa Value 79.81 71.40 73.16 67.37 

 

The Bases Models RF, GB, XGB and 

LGBM predictions were combined to produce the 

new features as in Figure 6. The meta features were 

obtained from the individual predictions of the base 

models and pooled into a dataframe. These meta 

features were transformed (each column) using TF-

IDF and the result is presented in Figure 7. This is 

then used as the dataset for the stack ensemble 

training and prediction. The meta features were 

split into test-train in the 80:20 ratio.  

 

 
Figure 6. A snap shot of the meta features 

 
Figure 7: A snap shot of the Transformed meta features 

 

Following the implementation of the meta-model, the model was then evaluated using accuracy, 

precision, recall, f1-score and kappa statistic as shown in table 4. 

 

Table 4: Performance Evaluation Meta Model 

Meta Model Prediction 

Accuracy Precision Recall F1 Score Kappa Value 

97.03 96.88 93.92 91.63 87.60 

 

The result of the meta model was compared with those of the base models in Table 5. 

 

Table 5: Performance Comparison of Base Models and Meta Model 

Base Models and our Meta model 

Metrics RF GB XGB LGBM Meta Model 

Accuracy 88.03 84.53 84.89 81.85 97.03 

Precision 85.98 83.59 83.86 84.53 96.88 

Recall 85.68 82.98 81.75 81.14 93.92 

F1 Score 85.79 83.89 82.82 80.38 91.63 

Kappa Value 79.81 71.40 73.16 67.37 87.60 
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The stacked ensemble model significantly 

outperforms all the base models across all metrics. 

This is further depicted in table 6 in terms of the 

percentage improvements over the base models. 

 

Table 6: Percentage improvement over the Base Models 

Metrics Performance Percentage improvement over the base models 

Accuracy 97.03% 9-15% 

Precision 96.88% 10-14% 

Recall 93.92% 8-12% 

F1 Score 91.63% 6-11% 

Kappa Value 87.60% 14-20% 

 

These results suggest that the meta-model 

successfully leveraged the strengths of the base 

models, reduced errors and improved the overall 

detection of technostress with at least 9%, 10%, 

8%, 6% and 14% in terms of accuracy, precision, 

recall, F1 Score and Kappa value respectively. 

 

VI. CONCLUSION 
Technostress remains a very debilitating 

problem silently ravaging the society and adding to 

the mental health burden in the world. It is 

evidenced that at the heart of many other disease 

conditions or their exacerbation is rising stress 

levels. The availability of Machine Learning 

techniques has been seen as a viable tool that can 

be utilized for the detection of technostress which 

will reduce the reliance on the use of 

questionnaires and other methods of data gathering 

that are unable to capture the presence of 

technostress early and are plagued with bias. In this 

study ensemble learning base models performed 

relatively well and are reliable for the detection of 

technostress. However, it was obvious that there is 

room for improvement which culminated in this 

research looking at stacking ensemble using SVC 

as a meta learner. This follow up research proved 

that to combine the predictions of RF, XGB, GB, 

and LGBM as meta data the stacking achieves 

enhanced detection of technostress than the 

individual ensemble models. 
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