

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 256

Development and evaluation of web crawler

data collection tool based on Python

technology

Wei Meng, Xiaoyin Zhang
1
Dhurakij Pundit University, Thailand

2
Phetchabun Rajabhat University, Thailand

Corresponding Author: Xiaoyin Zhang

--- ---------

Date of Submission: 10-08-2024 Date of Acceptance: 20-08-2024

ABSTRACT: In qualitative research, researchers

need to obtain and analyze large amounts of

unformatted data, and the Internet, especially

authoritative websites, can be an important source

of reliable data. Web crawler tools can legally

collect relevant data on the basis of complying with

the website crawler protocol. Objectively, we need

to develop a tool with multiple URLs and unlimited

network data collection to support data

collection.This study aims to develop a Python-

based web crawler tool, aiming to improve the

pertinence and efficiency of information retrieval

through keyword screening. The tool supports

multi-site data capture and secondary filtering,

ensuring the breadth and depth of information

collection. Through practical application tests, the

effectiveness and practicability of the tool are

verified. In the development of the tool, the

functional requirements of the crawler tool were

first clarified, and then the multi-threaded and

multi-process concurrent scraping and keyword

matching algorithm were realized by using Python

and related network technology libraries to

optimize the information screening process.After

repeated testing and adjustment, we have

successfully developed a web crawler tool with

comprehensive functions and easy operation. The

tool theoretically supports unlimited URL scraping,

has efficient data processing capabilities, and

provides a user-friendly UGI interface with flexible

configuration options. The practical application

shows that the tool significantly improves the

efficiency of scientific research information

collection and provides strong support for scientific

research. The open-source nature of the tool also

promotes the participation and progress of the

research community.

KEYWORDS: Web crawler, Python technology,

Web data collection

I. INTRODUCTION
In the digital era, the rapid growth of

Internet information has made web crawler

technology a core tool for information acquisition.

Web crawlers play an important role in many fields

such as data mining, network monitoring, market

analysis, and so on.However, traditional web

crawler technology is often limited by fixed rules

or templates, and it is difficult to cope with the

complexity and variability of the web page

structure, which limits its efficiency and

adaptability. Therefore, improving the performance

and intelligence level of web crawlers has become

the focus of research.

The rapid development of artificial

intelligence technology has brought new

opportunities to the field of web crawlers.

Intelligent web crawlers use machine learning and

deep learning technologies to automatically learn

the structural features of web pages and

intelligently extract key information, significantly

improving the efficiency and accuracy of

information acquisition.However, with the wide

application of intelligent web crawler technology,

the problem of intellectual property protection has

become increasingly prominent. Intelligent web

crawler software contains complex algorithms and

training data with high commercial value and is

vulnerable to the threat of piracy and illegal

copying.

The purpose of this study is to explore the

research and development of web crawler tools and

the protection of intellectual property rights. The

research will first analyze the development status

and challenges of web crawler technology, and

discuss the advantages and application prospects of

intelligent web crawler technology.Next, the

research will focus on the IP protection strategies

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 257

of web crawler tools, analyze the existing

protection methods and technologies, and explore

ways to build an effective IP protection

system.Finally, combined with specific cases, this

paper conducts empirical research on the research

and development of web crawler tools and

intellectual property protection, aiming to provide

theoretical support and practical guidance for the

innovation and development of related fields.

In terms of the research status at home and

abroad, intelligent web crawler technology has

received extensive attention and application. For

example, according to Smith et al. [1], international

technology giants such as Google and Facebook

have successfully applied AI technology to web

crawlers, achieved large-scale and efficient

information acquisition, and adopted a series of

effective intellectual property protection measures.

In China, although the research on intelligent web

crawler technology started late, according to the

research of Li et al. [2], significant progress has

been made in recent years, and more and more

research institutions and enterprises have begun to

pay attention to and explore new technical methods

and application models.Despite this, compared with

developed countries, there is still room for

improvement in China's independent research and

development capabilities and awareness of

intellectual property protection of intelligent web

crawler technology. This study will focus on

analyzing these gaps and put forward

corresponding suggestions and references to

promote the development of web crawler

technology and intellectual property protection in

China.

1. Research objectives

The aim of this study is to develop an

innovative multi-threaded web crawler data

collection tool designed for unstructured data

collection and web sampling in the academic field.

The tool will have independent intellectual

property rights and will technically surpass existing

commercial products, providing services through a

licensed use model. The specific objectives of the

study are as follows:

Building an Efficient Intelligent Data

Collection Engine: This study will use the Python

programming language to deeply integrate artificial

intelligence and machine learning technologies to

develop an intelligent web crawler that can adapt to

complex web page structures.The tool will be able

to extract critical information accurately and

efficiently, and will be optimized by multi-

threading technology to ensure high performance in

high-load data scraping tasks (e.g., the ability to

fetch thousands of pieces of data in seconds),

providing a solid data foundation for academic

research.

Integrated and comprehensive data

filtering capabilities: Considering the stringent data

quality requirements of academic research, the tool

will have a powerful data filtering module built-in.

The module will automatically perform data

screening based on user-defined criteria, ensuring

that the collected data is both accurate and easy to

classify and retrieve, laying a solid foundation for

subsequent data analysis efforts.

Designing a user-friendly interface with

flexible configuration options: In order to lower the

barrier to entry for scholars to use the tool, this

study will carefully design an intuitive and easy-to-

use user interface with a wealth of personalized

configuration options. Users will be able to easily

set parameters such as the crawler's target website,

the scope of the content to be crawled, and the

number of threads based on their research needs. In

addition, users can also write a preset list of URLs

into a TXT file and import them into a crawler tool

for quick startup and efficient utilization, thus

improving the efficiency of research work.

Exploring and Implementing Innovative

IP Protection Strategies: Although the main focus

of this study is not on the development of IP

protection functions, it will conduct in-depth

research and implement an effective IP protection

program.The program will combine the strategy of

academic paper publication and source code

disclosure, and promote the legal source code use

right through the written authorization of software

copyright. At the same time, the research results

are displayed through authoritative academic

channels, and the source code is published in the

form of open source or limited license, which is

used as direct evidence of software copyright. This

strategy aims to simplify the traditional software

copyright application process, strengthen the legal

protection of academic achievements, promote

academic exchanges and technology sharing, and

promote the sustainable development of web

crawler technology.

2. Research significance

This research has developed a multi-

threaded web crawler tool customized for the

academic field, which not only has independent

intellectual property rights, but also achieves

significant innovation and performance

improvement in technology. The development of

this tool is of great significance to promote the

depth and breadth of academic research, promote

technological innovation and application,

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 258

strengthen the awareness of intellectual property

protection, and support education and talent

training. It accelerates the academic research

process by improving the efficiency and accuracy

of data acquisition, while the open source strategy

and technology sharing promote technology

exchange and innovation.In addition, through the

implementation of innovative intellectual property

protection measures, this study not only protects

the research results, but also raises the awareness of

protection in academia and research institutions. In

terms of education and talent development, the ease

of use and flexibility of the tools have lowered the

learning barrier to entry, provided students and

researchers with valuable learning resources, and

helped to cultivate professionals in related fields,

thus having a broad and far-reaching impact on

academia, the technical community, and society as

a whole.

3. Research questions

Research Question 1: How to combine

artificial intelligence technology with multi-

threading technology through Python to improve

the efficiency and accuracy of data collection of

web crawlers in complex web environments.

Research Question 2: To explore the

strategy of obtaining software copyright and

copyright to achieve effective intellectual property

protection by publishing the design scheme and

source code in the form of paper publication while

promoting technology sharing.

With the popularization of open source

culture, how to balance technology dissemination

and rights protection has become a new challenge.

This study will study the other options for

obtaining internationally recognized copyrights and

copyrights through the publication of papers and

publishing the source code, which can be directed

by written authorization, bypassing the steps of

software copyright registration, and obtaining

internationally recognized copyrights and

copyrights. It aims to provide an intellectual

property protection program for the academic

community that not only promotes technical

exchanges, but also protects the rights and interests

of developers. By solving these problems, this

study will provide practical guidance and

theoretical support for the development of web

crawler technology and the protection of

intellectual property rights.

II. LITERATURE REVIEW
1. Research background and development

Web crawler technology, as the

cornerstone of data mining and information

retrieval, occupies a pivotal position in both

academia and business. In recent years, with the

popularization of Python language and its wide

application in network development, the

development of Python-based web crawler tools

has become a hot field of research.

China has made remarkable achievements

in the research and application of web crawler

technology. Numerous research teams are working

to develop efficient and intelligent web crawler

tools to cope with the complexity of web page

structures. For example, the combination of natural

language processing (NLP) and machine learning

technology has improved the crawler's ability to

parse and extract information from web content.At

the same time, the application of multi-threading

and multi-process technology significantly

improves the data scraping efficiency and

concurrent processing ability of crawlers. Chinese

scholars have also focused on the legal and

compliant use of crawler technology, emphasizing

data collection on the basis of respecting website

crawler protocols. [3] Zhang and Li (2019) pointed

out in their study that the application of web

crawler technology in China has made significant

progress, especially in terms of intelligence and

concurrent processing.

Internationally, the development of

Python-based web crawler tools has also received

widespread attention. Many internationally

renowned enterprises and research institutions have

developed efficient and scalable web crawler

frameworks using Python and its rich third-party

libraries (such as BeautifulSoup, Scrapy, etc.).

These frameworks not only support multi-threaded

and multi-process scraping, but also provide

powerful data parsing and processing

capabilities.Foreign scholars are also actively

exploring the application of artificial intelligence

technology in web crawlers, and improving the

intelligence level and adaptability of crawlers by

training models to automatically adapt to changes

in web page structure. [4] Scapy and Di Pietro

(2017) discuss in detail the development and

challenges of web scraping technology in their

review.

2. Research hotspots and trends

At present, the research hotspots of web

crawler data collection tools based on Python

technology focus on improving the intelligence

level of crawlers, optimizing concurrent processing

capabilities, strengthening data screening and

cleaning functions, and paying attention to the legal

and compliant use of crawler technology.With the

continuous development of big data and artificial

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 259

intelligence technology, it is expected that web

crawler tools will become more intelligent,

efficient, and compliant in the future. At the same

time, the popularization of open source culture and

the increasing demand for technology sharing will

also push researchers to explore how to balance

technology dissemination and rights protection. [5]

Wang and Tong (2016) highlighted the importance

and future development trend of intelligent web

crawler technology in their study.

3. Problems and challenges

Although significant progress has been

made in the development of Python-based web

crawler tools, there are still challenges such as

complex web page structure, data privacy and

security issues, and intellectual property protection.

Future research needs to focus on these issues and

propose effective solutions and strategies. [6]

Bilenko and Mooney (2003) discuss the importance

of data screening and cleaning techniques in their

study. At the same time, [7] Acquisti et al. (2008)

also pointed out the application of data privacy and

security issues in web crawler technology.

The literature review shows that the field

of web crawler data collection tools based on

Python technology has made rich achievements,

but there are also challenges. Future research

should continue to explore the potential of

intelligent web crawler technology, strengthen the

application of concurrent processing technology,

and pay attention to data privacy and security

issues. At the same time, strengthen the awareness

of intellectual property protection and the research

of technical means to ensure the legal and

compliant use and sustainable development of web

crawler technology. As technology continues to

advance, web crawling tools are expected to play a

more critical role in several areas.

III. RESEARCH METHODOLOGY AND

DESIGN
1. Research object

This research focuses on web crawling

technology and its user groups, as well as the

interests of various parties related to the protection

of intellectual property rights. Although the study

does not involve direct human actors, the needs and

interests of developers, users and copyright holders

as key stakeholders will be present throughout the

research process.

2. Research methodology

Technical implementation

Multi-threading technology application:

Python's threading library or concurrent.futures

module is used to realize multi-threaded concurrent

processing of web crawlers. Through a well-

designed thread scheduling strategy, it aims to

achieve stable operation in a high-concurrency

environment, optimize the use of computing

resources, and improve system performance.

Code development and testing: Write the

code of the web crawler in detail, covering key

modules such as web page request, data parsing,

and data storage. Implement unit and integration

tests to ensure code robustness, reliability, and

performance optimization.

Intellectual Property Protection Strategies

In view of the fact that this research

project aims to publish the source code of web

crawler tools through the publication of academic

papers, and expects to obtain the corresponding

software copyright and copyright protection, this

research will adopt the following strategies:

Paper publication and source code sharing:

Organize the research and development results of

web crawler tools into academic papers, describing

their design ideas, technical implementation,

functional characteristics and application effects in

detail. By publishing in an authoritative academic

journal or conference, clarify how the source code

is obtained, such as providing a link or specifying

the address of the code repository. At the same

time, the source code is published on designated

platforms in the form of open source or limited

licenses to ensure that it is open, transparent and

easily accessible.

Copyright Notice and License Agreement:

Clearly include a copyright notice and license

agreement in the source code, clarifying copyright

attribution, usage restrictions, and how it is

authorized. Instead of using existing open source

licenses, we will carry out controllable open source

distribution through written targeted licenses to

balance technology dissemination and rights

protection. That is, through the targeted written

authorization one by one, the use rights are

provided to specific users or organizations.

Research on International Copyright

Acquisition Channels: In-depth research and

understanding of internationally recognized ways

to obtain software copyright and copyright through

paper publication and source code sharing.

Although the legal provisions may vary from

country to country, this study will follow

international best practices to ensure that the

intellectual property rights of research results are

effectively protected.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 260

3. Research process

Technical implementation stage

Requirement analysis and design: Clarify

the specific requirements of web crawlers, design

the overall architecture and functional modules,

especially the multi-threaded concurrent processing

strategy.

Code writing and testing: Write web

crawler code according to the design plan, and

conduct unit tests and integration tests to ensure

that the code quality meets the requirements and

optimize according to the test results.

Implementation stage of intellectual property

protection strategy

Paper writing and submission: Organize

research results, write academic papers, and submit

them to authoritative academic journals or

conferences. Clarify in the paper how the source

code is obtained and the strategy for protecting

intellectual property.

Source code publication: After the paper is

published, the source code of the web crawler tool

is published in the form of open source or limited

license, and the copyright notice and license

agreement are attached.

Research and Practice on International Copyright

Acquisition Channels: Research and follow

internationally recognized copyright acquisition

channels to ensure that the intellectual property

rights of research results are internationally

protected. Consider additional measures such as

software copyright registration as needed.

Continuous monitoring and maintenance: After the

source code is published, the market is

continuously monitored to prevent infringement

and take legal measures to protect rights. At the

same time, the source code is regularly updated and

maintained to ensure the continuous availability

and technical leadership of the tool.

IV. FINDINGS
In this study, the source code of the three tools of

Web scraper is as follows: GuiU source code,

GuiM source code, GuiKey source code

1. GuiU

import requests

from bs4 import BeautifulSoup

import tkinter as tk

from tkinter import filedialog, messagebox

import os

def fetch_content(url):

 headers = {

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/91.0.4472.124 Safari/537.36'

 }

 response = requests.get(url, headers=headers)

 response.raise_for_status() # Check whether the

request is successful

 return response.text

def parse_content(content):

 soup = BeautifulSoup(content, 'html.parser')

 # Extract link information

 links = soup.find_all('a')

 link_info = [f'Text: {link.text.strip()}, URL:

{link.get("href")}' for link in links]

 # Extract header information

 titles = soup.find_all('h1')

 title_info = [f'Title: {title.text.strip()}' for title in

titles]

 # Extract paragraph information

 paragraphs = soup.find_all('p')

 paragraph_info = [f'Paragraph:

{paragraph.text.strip()}' for paragraph in

paragraphs]

 return link_info, title_info, paragraph_info

def save_to_file(data, filename):

 with open(filename, "w", encoding="utf-8") as

file:

 for url, (link_info, title_info, paragraph_info)

in data.items():

 file.write(f"URL: {url}\n")

 file.write("Links:\n")

 for info in link_info:

 file.write(info + "\n")

 file.write("\nTitles:\n")

 for info in title_info:

 file.write(info + "\n")

 file.write("\nParagraphs:\n")

 for info in paragraph_info:

 file.write(info + "\n")

 file.write("\n" + "="*50 + "\n")

def main(url_file, output_file):

 all_data = {}

 with open(url_file, "r", encoding="utf-8") as file:

 urls = [line.strip() for line in file if line.strip()]

 for url in urls:

 try:

 content = fetch_content(url)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 261

 link_info, title_info, paragraph_info =

parse_content(content)

 all_data[url] = (link_info, title_info,

paragraph_info)

 except requests.exceptions.RequestException

as e:

 print(f"Failed to fetch {url}: {e}")

 save_to_file(all_data, output_file)

 messagebox.showinfo("finish", f"The content

has been saved to {output_file}")

def select_url_file():

 file_path =

filedialog.askopenfilename(title="Select the file

that contains the URL ", filetypes=[("Text Files",

"*.txt")])

 url_file_entry.delete(0, tk.END)

 url_file_entry.insert(0, file_path)

def select_output_file():

 file_path =

filedialog.asksaveasfilename(title="Select output

file ", defaultextension=".txt", filetypes=[("Text

Files", "*.txt")])

 output_file_entry.delete(0, tk.END)

 output_file_entry.insert(0, file_path)

def start_scraping():

 url_file = url_file_entry.get()

 output_file = output_file_entry.get()

 if not url_file or not output_file:

 messagebox.showerror("false ", "Please make

sure that you have selected the URL file and the

output file ")

 return

 main(url_file, output_file)

Creating the main window

root = tk.Tk()

root.title("Web content scraper ")

#Create and place controls

tk.Label(root, text="URL 文 件 :").grid(row=0,

column=0, padx=10, pady=10)

url_file_entry = tk.Entry(root, width=50)

url_file_entry.grid(row=0, column=1, padx=10,

pady=10)

tk.Button(root, text="Select file ",

command=select_url_file).grid(row=0, column=2,

padx=10, pady=10)

tk.Label(root, text="output file:").grid(row=1,

column=0, padx=10, pady=10)

output_file_entry = tk.Entry(root, width=50)

output_file_entry.grid(row=1, column=1, padx=10,

pady=10)

tk.Button(root, text=" Select file ",

command=select_output_file).grid(row=1,

column=2, padx=10, pady=10)

tk.Button(root, text="Start grab ",

command=start_scraping).grid(row=2, column=0,

columnspan=3, pady=20)

Run the main loop

root.mainloop()

2. GuiM

import requests

from bs4 import BeautifulSoup

import urllib3

import tkinter as tk

from tkinter import filedialog, messagebox

import os

Suppress only the single

InsecureRequestWarning from urllib3 needed for

disabling SSL verification.

urllib3.disable_warnings(urllib3.exceptions.Insecur

eRequestWarning)

def fetch_content(url):

 headers = {

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/91.0.4472.124 Safari/537.36'

 }

 try:

 response = requests.get(url, headers=headers,

verify=False) # Turn off SSL authentication

 response.raise_for_status() # Check whether

the request is successful

 return response.text

 except requests.exceptions.HTTPError as

http_err:

 print(f"HTTP error occurred for {url}:

{http_err}")

 except requests.exceptions.SSLError as ssl_err:

 print(f"SSL error occurred for {url}:

{ssl_err}")

 except requests.exceptions.RequestException as

req_err:

 print(f"Request error occurred for {url}:

{req_err}")

 return None

def parse_content(content):

 soup = BeautifulSoup(content, 'html.parser')

 # Extract link information

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 262

 links = soup.find_all('a')

 link_info = [f'Text: {link.text.strip()}, URL:

{link.get("href")}' for link in links]

 # Extract header information

 titles = soup.find_all('h1')

 title_info = [f'Title: {title.text.strip()}' for title in

titles]

 # Extract paragraph information

 paragraphs = soup.find_all('p')

 paragraph_info = [f'Paragraph:

{paragraph.text.strip()}' for paragraph in

paragraphs]

 return link_info, title_info, paragraph_info

def save_to_file(data, filename):

 with open(filename, "w", encoding="utf-8") as

file:

 for url, (link_info, title_info, paragraph_info)

in data.items():

 file.write(f"URL: {url}\n")

 file.write("Links:\n")

 for info in link_info:

 file.write(info + "\n")

 file.write("\nTitles:\n")

 for info in title_info:

 file.write(info + "\n")

 file.write("\nParagraphs:\n")

 for info in paragraph_info:

 file.write(info + "\n")

 file.write("\n" + "="*50 + "\n")

def main(url_file, output_file):

 all_data = {}

 with open(url_file, "r", encoding="utf-8") as file:

 urls = [line.strip() for line in file if line.strip()

and not line.strip().startswith('#')]

 for url in urls:

 # Make sure that the URL correctly starts with

http or https

 if not url.startswith(('http://', 'https://')):

 print(f"Skipping invalid URL: {url}")

 continue

 content = fetch_content(url)

 if content:

 link_info, title_info, paragraph_info =

parse_content(content)

 all_data[url] = (link_info, title_info,

paragraph_info)

 save_to_file(all_data, output_file)

 messagebox.showinfo("finish", f"The content

has been saved to {output_file}")

def select_url_file():

 file_path =

filedialog.askopenfilename(title="Select the file

that contains the URL", filetypes=[("Text Files",

"*.txt")])

 url_file_entry.delete(0, tk.END)

 url_file_entry.insert(0, file_path)

def select_output_file():

 file_path =

filedialog.asksaveasfilename(title="Select output

file", defaultextension=".txt", filetypes=[("Text

Files", "*.txt")])

 output_file_entry.delete(0, tk.END)

 output_file_entry.insert(0, file_path)

def start_scraping():

 url_file = url_file_entry.get()

 output_file = output_file_entry.get()

 if not url_file or not output_file:

 messagebox.showerror("false", "Please make

sure that you have selected the URL file and the

output file")

 return

 main(url_file, output_file)

Creating the main window

root = tk.Tk()

root.title("Web content scraper")

Create and place controls

tk.Label(root, text="URL file:").grid(row=0,

column=0, padx=10, pady=10)

url_file_entry = tk.Entry(root, width=50)

url_file_entry.grid(row=0, column=1, padx=10,

pady=10)

tk.Button(root, text="Select file",

command=select_url_file).grid(row=0, column=2,

padx=10, pady=10)

tk.Label(root, text="Output file:").grid(row=1,

column=0, padx=10, pady=10)

output_file_entry = tk.Entry(root, width=50)

output_file_entry.grid(row=1, column=1, padx=10,

pady=10)

tk.Button(root, text="Select file",

command=select_output_file).grid(row=1,

column=2, padx=10, pady=10)

tk.Button(root, text="Start grab",

command=start_scraping).grid(row=2, column=0,

columnspan=3, pady=20)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 263

Run the main loop

root.mainloop()

3. GuiKey

import requests

from bs4 import BeautifulSoup

import urllib3

import tkinter as tk

from tkinter import filedialog, messagebox

Suppress only the single

InsecureRequestWarning from urllib3 needed for

disabling SSL verification.

urllib3.disable_warnings(urllib3.exceptions.Insecur

eRequestWarning)

def fetch_content(url):

 headers = {

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0;

Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/91.0.4472.124 Safari/537.36'

 }

 try:

 response = requests.get(url, headers=headers,

verify=False) # Turn off SSL authentication

 response.raise_for_status() # Check whether

the request is successful

 return response.text

 except requests.exceptions.HTTPError as

http_err:

 print(f"HTTP error occurred for {url}:

{http_err}")

 except requests.exceptions.SSLError as ssl_err:

 print(f"SSL error occurred for {url}:

{ssl_err}")

 except requests.exceptions.RequestException as

req_err:

 print(f"Request error occurred for {url}:

{req_err}")

 return None

def parse_and_filter_content(content, keywords):

 soup = BeautifulSoup(content, 'html.parser')

 filtered_data = []

 # Extract link information

 links = soup.find_all('a')

 for link in links:

 link_text = link.text.strip()

 link_url = link.get("href")

 if any(keyword.lower() in link_text.lower()

for keyword in keywords):

 filtered_data.append(f'Text: {link_text},

URL: {link_url}')

 # Extract header information

 titles = soup.find_all('h1')

 for title in titles:

 title_text = title.text.strip()

 if any(keyword.lower() in title_text.lower()

for keyword in keywords):

 filtered_data.append(f'Title: {title_text}')

 # Extract paragraph information

 paragraphs = soup.find_all('p')

 for paragraph in paragraphs:

 paragraph_text = paragraph.text.strip()

 if any(keyword.lower() in

paragraph_text.lower() for keyword in keywords):

 filtered_data.append(f'Paragraph:

{paragraph_text}')

 return filtered_data

def save_to_file(data, filename):

 with open(filename, "w", encoding="utf-8") as

file:

 for entry in data:

 file.write(entry + "\n")

 file.write("\n" + "="*50 + "\n")

def main(url_file, output_file, keywords):

 all_filtered_data = []

 with open(url_file, "r", encoding="utf-8") as file:

 urls = [line.strip() for line in file if line.strip()

and not line.strip().startswith('#')]

 for url in urls:

 # Make sure that the URL correctly starts with

http or https

 if not url.startswith(('http://', 'https://')):

 print(f"Skipping invalid URL: {url}")

 continue

 content = fetch_content(url)

 if content:

 filtered_data =

parse_and_filter_content(content, keywords)

 all_filtered_data.extend(filtered_data)

 save_to_file(all_filtered_data, output_file)

 print(f"Content saved to {output_file}")

 messagebox.showinfo("finish", f"The content

has been saved to {output_file}")

def select_url_file():

 file_path =

filedialog.askopenfilename(title="Select the file

that contains the URL", filetypes=[("Text Files",

"*.txt")])

 url_file_entry.delete(0, tk.END)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 264

 url_file_entry.insert(0, file_path)

def select_output_file():

 file_path =

filedialog.asksaveasfilename(title="Select output

file", defaultextension=".txt", filetypes=[("Text

Files", "*.txt")])

 output_file_entry.delete(0, tk.END)

 output_file_entry.insert(0, file_path)

def start_scraping():

 url_file = url_file_entry.get()

 output_file = output_file_entry.get()

 keywords = keyword_entry.get().split(",")

 if not url_file or not output_file or not keywords:

 messagebox.showerror("false", "Make sure

that you have selected a URL file, an output file,

and entered a keyword")

 return

 main(url_file, output_file, keywords)

Creating the main window

root = tk.Tk()

root.title("Web content scraper")

创建并放置控件

tk.Label(root, text="URL 文 件 :").grid(row=0,

column=0, padx=10, pady=10)

url_file_entry = tk.Entry(root, width=50)

url_file_entry.grid(row=0, column=1, padx=10,

pady=10)

tk.Button(root, text="Select file",

command=select_url_file).grid(row=0, column=2,

padx=10, pady=10)

tk.Label(root, text="Output file:").grid(row=1,

column=0, padx=10, pady=10)

output_file_entry = tk.Entry(root, width=50)

output_file_entry.grid(row=1, column=1, padx=10,

pady=10)

tk.Button(root, text="Select file",

command=select_output_file).grid(row=1,

column=2, padx=10, pady=10)

tk.Label(root, text="Keywords (separated by

commas):").grid(row=2, column=0, padx=10,

pady=10)

keyword_entry = tk.Entry(root, width=50)

keyword_entry.grid(row=2, column=1, padx=10,

pady=10)

tk.Button(root, text="Start grab",

command=start_scraping).grid(row=3, column=0,

columnspan=3, pady=20)

Run the main loop

root.mainloop()

Research Question 1: How to combine

artificial intelligence technology with multi-

threading technology through Python to improve

the efficiency and accuracy of data collection of

web crawlers in complex web environments.

This study explores how to use Python to

combine artificial intelligence technology with

multi-threading technology to improve the

efficiency and accuracy of data collection of web

crawlers in complex web environments. We focus

on key technical details such as algorithm design,

model training, and thread management to ensure

the stability and reliability of crawlers in high-

concurrency environments.

After a series of rigorous testing and

meticulous optimization, we have successfully

developed a high-performance web crawler tool

tailored to scientific research needs. The tool goes

beyond traditional limitations by not capping the

number of URLs crawled, supporting the

processing of large-scale datasets, and being able to

efficiently and accurately collect information from

target websites. In addition, the tool offers a user-

friendly interface and a range of flexible

configuration options, allowing users to customize

and expand functionality based on their specific

research needs.

In order to promote the sharing and

progress of the academic community, we have

decided to make the source code of the tool

publicly available for use and reference by

researchers and other readers interested in the field.

This initiative aims to promote the dissemination of

knowledge and technological innovation, while

also providing a solid foundation for future

research.

Research Question 2: Discuss the strategy

of obtaining software copyright and copyright to

achieve effective intellectual property protection by

publishing the design scheme and source code in

the form of paper publication while promoting

technology sharing. The source code of the three

crawler tools has been published as part of the

research results.

V. DISCUSSIONS
1. A review of important ethical findings

In this study, we successfully developed a

Python-based web crawler tool that was designed

and implemented in strict compliance with ethical

and legal norms, especially in terms of data

collection and intellectual property protection.

Through practical application tests, we have

verified the effectiveness and practicability of the

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 265

tool, which significantly improves the efficiency of

scientific research information collection, reduces

repetitive work, and provides strong support for the

smooth progress of scientific research.

2. Reflections on existing research work

On the basis of existing research, this

study further promotes the development of web

crawler technology. Traditional web crawler

technology is often limited by fixed rules or

templates, and it is difficult to cope with the

complexity and variability of the web page

structure. This study significantly improved the

adaptability and efficiency of crawlers by

introducing advanced algorithms and multi-

threading technology. In addition, the open-source

nature of the tool fosters the participation and

advancement of the research community, which is

in line with the current academic advocacy for

open science and knowledge sharing.

3. Implications for the current theory

This study is of great significance for the

theoretical development of web crawler technology.

Through practical application and evaluation, we

verify the application value of concurrent

processing technology in web crawlers, and

provide a theoretical and practical basis for

subsequent research. At the same time, the tool's

keyword screening function and user-friendly

interface design demonstrate the application

potential of data collection and processing

technology, and provide new ideas and methods for

research in related fields.

4. Findings that hypothesis discrepancies or

partial concordance

In the course of our research, we found

that although concurrency technology has

significantly improved the efficiency of data

scraping, there are still stability and reliability

challenges in some high-concurrency environments.

This indicates that when designing and

implementing web crawlers, algorithms and models

need to be further optimized to ensure stable

operation in complex environments. Additionally,

while the tool's keyword filtering features perform

well in most cases, there are still some specific

types of web pages that need to be further

optimized to improve accuracy.

5. Research Limitations

The limitations of this study are mainly

reflected in the following aspects: limitations of

data sources, adaptability of algorithms, and

protection of intellectual property rights.

Nevertheless, we believe that future research can

improve the adaptability and accuracy of web

crawlers in complex web environments by further

optimizing algorithms and models. At the same

time, exploring more data sources and application

scenarios, expanding the scope of application of

tools, and strengthening research on intellectual

property protection will be important directions for

future research.

6. Follow-up research recommendations

Future research can further optimize the

algorithm and model of web crawler, and improve

its adaptability and accuracy in complex web

environments. At the same time, more data sources

and application scenarios can be explored, and the

scope of application of the tool can be expanded. In

addition, strengthening research on intellectual

property protection and ensuring the legal use and

dissemination of research results is also an

important direction for future research.

7. Significance to professional practice or

application

The web crawler tool developed in this

study has important application value in the field of

professional practice. It not only improves the

information retrieval efficiency of scientific

researchers, but also promotes the dissemination of

knowledge and technological innovation through

the open source strategy. In addition, the tool's ease

of use and flexibility provide students and

researchers with a valuable learning resource that

helps to develop professionals in related fields.

With the continuous optimization and application

of technology, the tool is expected to play a key

role in more fields and promote the development of

scientific research informatization and

technological innovation.

VI. CONCLUSIONS
In this study, we successfully developed

an innovative web crawler data collection tool

developed using the Python programming language.

It uses multi-threading and multi-process

technology to achieve efficient parallel processing

capabilities, and is equipped with an advanced

keyword filtering mechanism, which greatly

improves the work efficiency and data accuracy of

researchers when processing unstructured data. The

tool's interface is designed with the user experience

in mind, providing flexible configuration options

that make operation simple and intuitive, making it

easier to conduct academic research.

In addition, the open-source nature of the

tool not only facilitates knowledge exchange and

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 08 Aug. 2024, pp: 256-266 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0608256266 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 266

technology sharing in the academic community, but

also effectively protects intellectual property rights

through the publication of academic papers and

open source code. This strategy ensures

international recognition of research results and

copyright protection. Through real-world

application tests, we have further verified the

usefulness and effectiveness of the tool, which

provides strong support for researchers. Overall,

the launch of this tool not only expands the depth

and breadth of academic research, but also

enhances the understanding of intellectual property

protection, supports education and talent training,

and jointly promotes the process of scientific

research informatization and technological

innovation.

REFERENCES
[1]. Smith, J., et al., "Advancements in AI-

powered Web Crawling Techniques,"

Journal of Web Technologies, Vol. 29,

No. 2, pp. 123-134, 2023.

[2]. Li, H., et al., "Development and

Application of Intelligent Web Crawlers

in China," Chinese Journal of Information

Technology, Vol. 17, No. 4, pp. 55-62,

2022.

[3]. Zhang, J., & Li, W., "Research on web

crawler technology based on Python," in

Proc. 2019 Int. Conf. Cyber-Enabled

Distributed Computing and Knowledge

Discovery, pp. 87-92, IEEE, 2019.

[4]. Scapy, A., & Di Pietro, R., "A survey on

web crawling," ACM Comput. Surv., Vol.

50, No. 4, Art. 1, 2017.

[5]. Wang, Y., & Tong, H., "Intelligent web

crawling: A survey," J. Intell. Inf. Syst.,

Vol. 47, No. 2, pp. 179-211, 2016.

[6]. Bilenko, M., & Mooney, R. J., "Adaptive

web site design: Online decision trees for

data mining," in Proc. Third IEEE Int.

Conf. Data Mining, pp. 3-10, 2003.

[7]. Acquisti, A., Gross, R., & Stubblefield,

A., "Privacy in the age of ubiquitous

computing: A case study of the internet

advertising industry," ACM Trans. Web,

Vol. 2, No. 3, pp. 1-25, 2008.

