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ABSTRACT: 

The advanced modeling of a neuro-fuzzy algorithm 

for an intelligent temperature management system 

with the goal of maximizing energy efficiency and 

environmental regulation is presented in this 

research. The suggested algorithm offers a reliable 

and adaptable method of temperature control by 

combining the adaptive learning powers of neural 

networks with the human-like reasoning of fuzzy 

logic. In contrast to conventional control techniques 

like static fuzzy logic and proportional-integral-

derivative (PID) controllers, this neuro-fuzzy model 

dynamically modifies its parameters in real-time to 

adapt to changing environmental conditions. The 

neuro-fuzzy method outperformed other algorithms 

in preserving target temperature levels, cutting 

response times, and consuming the least amount of 

energy during lengthy simulations. The outcomes 

validate that the algorithm is capable of managing 

the non-linearities and uncertainties present in 

complex contexts, such HVAC systems, industrial 

processes, and smart buildings. This work 

contributes to the field of intelligent control systems 

by providing a self-adaptive, scalable method for 

maintaining ideal environmental conditions, 

regulating temperature precisely with little to no 

human interaction, and saving energy. 

Keywords:  Neuro-fuzzy algorithm, intelligent 

temperature control, Fuzzy logic, HVAC, Python, 

PID 

 

I. INTRODUCTION 
The increasing complexity of industrial 

processes and the requirement for energy efficiency 

have led to a considerable growth in demand for 

more advanced and adaptive temperature control 

systems in recent years.  

While traditional control systems work well 

in environments that are stable, they sometimes 

cannot adjust to dynamic changes, which results in 

inefficiencies and possible malfunctions in 

thesystem. The field of intelligent control is 

undergoing a revolution with the introduction of 

neuro-fuzzy algorithms into temperature control 

systems. These algorithms provide strong flexibility 

and improved decision-making abilities in 

unpredictable and dynamic contexts. These systems 

blend fuzzy logic, which manages imprecision and 

ambiguity in decision-making, with the strengths of 

neural networks, which are excellent at learning from 

data.  

More intelligent and efficient temperature 

management systems are desperately needed as the 

world's energy consumption rises in order to 

maximize energy use while preserving comfort and 

process stability (Zhou et al., 2020). Because neuro-

fuzzy systems are adaptive, they can adjust to 

changing environmental conditions and learn from 

them. This makes them ideal for a wide range of 

applications, from industrial process management to 

building HVAC systems. The development of neuro-

fuzzy systems has accelerated because to recent 

advancements in processing power and algorithmic 

efficiency, which allow for their implementation in 

real-time control contexts (Angelov et al., 2020).  

A fuzzy logic based design control system 

offers flexibility in system design and 

implementation, since its implementation uses “if 

then” logic instead of sophisticated differential or 

mathematical equations (K.A. Akpado, P. N. 

Nwankwo, et. al., 2018). This paper focuses on 

developing an advanced model of a neuro-fuzzy 

algorithm specifically tailored for intelligent 

temperature control, aiming to enhance accuracy, 

responsiveness, and energy efficiency. 

 

A. Problem Statement: 

Maintaining optimal temperature control is 

a critical challenge in various environments, such as 

industrial processes, smart homes, and agricultural 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 6, Issue 09 Sep. 2024,  pp: 769-791  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0609769791         |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal      Page 770 

settings, where traditional control systems often 

struggle to balance efficiency, responsiveness, and 

adaptability. Conventional temperature control 

methods like PID controllers, though widely used, 

lack the capability to handle nonlinearities, 

uncertainties, and dynamic changes effectively. This 

limitation often results in suboptimal performance, 

increased energy consumption, and system 

instability. To address these challenges, there is a 

need for an advanced, intelligent temperature control 

system that can dynamically learn and adapt to 

changing conditions while maintaining stability and 

minimizing energy consumption. A Neuro-Fuzzy 

algorithm, which combines the human-like reasoning 

style of fuzzy logic with the learning capabilities of 

neural networks, offers a promising solution. 

However, the development and modeling of such 

algorithms for intelligent temperature control remain 

underexplored. 

 

B. Aim of the project:    

The aim of the project is to develop an 

advanced neuro-fuzzy algorithm for intelligent 

temperature control system. 

 

C. The objectives of the project are: 

1. To develop a robust and adaptive neuro-fuzzy 

algorithm that combines the learning capabilities of 

neural networks with the interpretability of fuzzy 

logic to optimize temperature control systems. 

2. To reduce energy consumption by implementing 

an intelligent control mechanism that adapts to 

varying environmental conditions while maintaining 

optimal temperature regulation. 

3. To develop an advanced Neuro-Fuzzy algorithm 

for intelligent temperature control systems that can 

dynamically adapt to changing environmental 

conditions and uncertainties. 

4. To analyze the impact of the Neuro-Fuzzy 

algorithm on energy consumption, response time, 

and overall control accuracy, demonstrating its 

potential as a superior alternative to existing 

temperature control systems. 

 

II.CONCEPTS OF THE PROJECT 
This project introduces an advanced Neuro-

Fuzzy algorithm designed to enhance the intelligence 

and adaptability of temperature control systems. The 

Neuro-Fuzzy approach integrates the strengths of 

fuzzy logic, which handles uncertainty and 

imprecision, with the learning capability of neural 

networks to create a system that can learn from data, 

self-tune, and adapt to changing environmental 

conditions. The goal of the suggested algorithm is to 

outperform conventional techniques in terms of 

response time, control precision, and energy 

efficiency while providing a reliable solution for 

challenging control issues. Figures 1 and 2 depict the 

block diagrams of a neural-fuzzy logic system and a 

conventional temperature control system, 

respectively. 

 

 
Figure 1: Simple block diagram of a neural-fuzzy logic system 

 

 
Figure 2: Simplify block diagram of a temperature control system 
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A. The Structure of Artificial Neural Networks 

(ANNs) 

The input layer, hidden layers, and output 

layer are the three main layers that make up an 

ANN's structure (Goodfellow, Bengio, & Courville, 

2016). 

1. The input layer is in charge of obtaining the raw 

data and transferring it unaltered to further levels 

(Aggarwal, 2018). 

2. To identify patterns and characteristics in the input 

data, the hidden layers modify weights to perform 

intricate computations (Zhang et al., 2021). 

3. The output layer presents the ultimate forecast or 

outcome, which may encompass regression values, 

classification labels, or alternative consequences 

(Schmidhuber, 2015). Figure 3 depicts the 

architecture of neural networks. 

 

 
Figure 3: Neural Networks Architecture 

 

Artificial neural networks are based on the 

architecture and functions of human neurons. Neural 

nets or neural networks are other names for it. An 

artificial neural network's first layer, known as the 

input layer, transfers data from outside sources to the 

second layer, known as the hidden layer. Each 

neuron in the hidden layer takes in information from 

the neurons in the layer above, calculates the 

weighted sum, and then relays it to the neurons in the 

layer below (Aggarwal, 2018). Because these 

connections are weighted, the effects of the inputs 

from the preceding layer are essentially maximized 

by giving each input a unique weight, which is then 

modified during training to improve model 

performance.Units are connected from one layer to 

another in most neural networks. The weights 

assigned to each of these relationships indicate how 

much effect one unit has upon the others. The neural 

network gains more and more knowledge about the 

data as it moves from one unit to the next, ultimately 

producing an output from the output layer. 

 

B. Introduction to ANN Hybrid Systems: 

Hybrid systems are intelligent system that is 

framed by combining at least two intelligent 

technologies like Fuzzy Logic, Neural networks, 

Genetic algorithms, reinforcement learning, etc. 

Because several methodologies are integrated into a 

single computational model, these systems have a 

wider range of capabilities. These systems have the 

ability to reason and learn in a vague and 

unpredictable environment. These systems are 

capable of doing tasks that need human competence, 

such as subject knowledge and noise adaptability. In 

this research, we model an intelligent temperature 

management system using the Neuro-Fuzzy 

algorithm. 

 

C. Neuro-Fuzzy (Hybrid) Systems:  

Neural networks and fuzzy logic are 

combined in neuro-fuzzy systems. Fuzzy logic deals 

with approximate rather than fixed or accurate 

reasoning, but neural networks excel at learning from 

data. Neuro-fuzzy systems create more flexible and 

adaptive models by fine-tuning the parameters of the 

fuzzy inference system using neural networks. 

Neuro-fuzzy systems are hybrid models that combine 

fuzzy logic's interpretability and reasoning with 

neural networks' learning powers (Lee & Pan, 2022). 

In these systems, neural networks learn from data in 

a way that mimics human thinking, which aids in 

optimizing the parameters of fuzzy inference rules 

(Cordón & Herrera, 2020).  
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Figure 4: Simplified block diagram of a typicalNeuro-Fuzzy (Hybrid) system 

 

Further developments in Neuro-Fuzzy 

systems have concentrated on improving their 

efficiency and scalability for applications in robotics, 

financial forecasting, and intelligent decision-making 

systems (Palit & Bandyopadhyay, 2022). Fuzzy 

logic, on the other hand, improves the interpretability 

of these models by managing uncertainty and 

imprecision through a set of easily understandable 

fuzzy rules (Mendel, 2021). This combination allows 

Neuro-Fuzzy systems to adaptively learn from 

complex data while retaining the ability to explain 

their decisions, making them suitable for real-world 

applications like autonomous systems and healthcare 

analytics (Jothi & Raj, 2023). 

The strengths of neural networks and fuzzy 

logic are combined in neuro-fuzzy hybrid systems, 

which are made up of a few essential parts, to 

provide models that are both interpretable and 

adaptive. The primary parts of neuro-fuzzy hybrid 

systems are listed below. 

 

1. Fuzzy Inference System (FIS): The core element 

of a neuro-fuzzy system that is in charge of reasoning 

and decision-making is the fuzzy inference system. It 

maps input variables to output variables using a set 

of fuzzy rules, which are if-then statements that make 

sense to humans. These rules are based on linguistic 

variables that allow for approximate reasoning and 

handle uncertainty (Mendel, 2021). 

2. Membership Functions: The mapping between 

each input and a level of membership in a fuzzy set is 

specified by membership functions. They are 

employed to convert inputs from the real world into 

fuzzy values. Neural network learning techniques are 

utilized in Neuro-Fuzzy Systems to optimize the 

parameters and form of these membership functions 

(Cordón & Herrera, 2020). 

3. Neural Network Component: The fuzzy system's 

membership functions and rule weights are two 

examples of its parameters that are automatically 

adjusted by the neural network component based on 

data. This part uses learning methods such as 

backpropagation to minimize the error between 

expected and actual outputs, allowing the system to 

adjust to new data (Lee & Pan, 2022). 

4. Fuzzification Module: According to K.A. 

Akpado, P. N. Nwankwo, et al. (2018), the 

fuzzification module transforms clear numerical 

input values into fuzzy values so that the fuzzy 

inference system can analyze them. Real-world 

inputs are mapped onto appropriate fuzzy sets in this 

initial step of the fuzzy inference process (Jothi & 

Raj, 2023). 

5. Defuzzification Module: The inference system's 

fuzzy output is transformed back into a precise 

numerical value by the defuzzification module. This 

element is necessary to understand the system's final 

output in a way that is practical for real-world uses 

(Palit & Bandyopadhyay, 2022). 

6. Rule Base: A collection of ambiguous rules called 

the rule base control how the system behaves. These 

rules, which define the relationships between input 

and output variables in the form of "if-then" 

statements, are usually derived from expert 

knowledge or learnt from data (Zhou et al., 2023). 

7. Knowledge Base: The database, which contains 

details on membership functions and parameters, and 

the rule base make up the knowledge base. All of the 

fundamental information required by the Neuro-

Fuzzy System for adaptability and decision-making 

is kept in this component (Jothi & Raj, 2023). 

8. Learning Mechanism: The learning mechanism, 

typically a neural network algorithm, is responsible 

for updating the parameters of the fuzzy system 

based on input-output data pairs. It uses algorithms 

like gradient descent to minimize error and improve 

system performance over time (Cordón & Herrera, 

2020). 
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III. METHODOLOGY 
Implementing a neuro-fuzzy system for 

intelligent temperature control involves several steps, 

including defining the fuzzy logic system, creating a 

neural network, integrating both models, and 

simulating the control process. Our project deploys 

Python programming language to implement an 

intelligent Neuro-Fuzzy system for temperature 

control. We use libraries such as “numpy” for 

numerical calculations, “sklearn” for neural network 

implementation, and “matplotlib” for visualization. 

We also use the “scikit-fuzzy” library for fuzzy logic 

components. 

 

Step-by-Step Implementation of the Neuro-Fuzzy 

Algorithm for an Intelligent Temperature Control 

System: 

1. Define fuzzy variables and membership function. 

2. Define the fuzzy rules for the intelligent 

temperature control system. 

3.Simulate the fuzzy control system. 

4. Train the neural network. 

5. Integrate the neural and fuzzy models. 

 

1. Define the fuzzy variables and membership 

function 

We define the fuzzy variables: 

 

A. Input Variables: 

* Temperature: It can have values such as "Cold", 

"Warm", and "Hot". 

* Humidity: It can have values such as "Low", 

"Medium", and "High". 

 

B. Output Variable: 

* Fan Speed: It can have values like "Slow", 

"Medium", and "Fast". 

The definition of the fuzzy sets (such as "Cold," 

"Warm," and "Hot") and their associated membership 

functions is required in order to plot the membership 

function for a neuro-fuzzy algorithm used in an 

intelligent temperature control system. This is the 

Python code that creates and plots the temperature 

control system's membership function. 
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Brief Explanation of the Code: 

* Temperature, Humidity, and Fan Speed are defined 

as input and output variables. 

* Membership functions are defined using triangular 

shapes (fuzz.trimf), which are commonly used in 

fuzzy systems. 

* The plot functions are used to visualize these 

membership functions. 

* Output: 

The code generates three plots, each representing the 

membership functions for temperature, humidity, and 

fan speed as shown in figure 5. 

 

 
Figure 5(a): Temperature Membership Function 

 

 
Figure 5(b): Humidity Membership Function 

 
Figure 5(c): Fan Speed Membership Function 

 

2. Define the fuzzy rules for the intelligent 

temperature control system 

We develop a set of rules based on the fuzzy 

variables (temperature, humidity) and the output 

variable (fan speed) in order to construct the fuzzy 

rules for an intelligent temperature control system. 

These guidelines explain how to modify the fan 

speed in response to various temperature and 

humidity combinations. 

 

 

Fuzzy Rules for Fan Speed Control: 

Rule 1: If Temperature is Cold AND Humidity is 

Low, then Fan Speed is Slow. 

Rule 2: If Temperature is Cold AND Humidity is 

Medium, then Fan Speed is Slow. 

Rule 3: If Temperature is Cold AND Humidity is 

High, then Fan Speed is Slow. 

Rule 4: If Temperature is Warm AND Humidity is 

Low, then Fan Speed is Medium. 

Rule 5: If Temperature is Warm AND Humidity is 

Medium, then Fan Speed is Medium. 
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Rule 6: If Temperature is Warm AND Humidity is 

High, then Fan Speed is Fast. 

Rule 7: If Temperature is Hot AND Humidity is 

Low, then Fan Speed is Fast. 

Rule 8: If Temperature is Hot AND Humidity is 

Medium, then Fan Speed is Fast. 

Rule 9: If Temperature is Hot AND Humidity is 

High, then Fan Speed is Fast. 

We define the fuzzy control system using the skfuzzy 

library in order to put these rules into practice. A 

Python library called scikit-fuzzy (also known as 

skfuzzy) is used to create fuzzy logic in an easy and 

effective way. Like scikit-learn, it is a component of 

the larger scikit ecosystem and is constructed on top 

of the well-known SciPy library.  
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Figure 6(a): Fan Speed based on Temperature 

 

 
Figure 6(b): Fan Speed based on Humidity 

 

 
Figure 6(c): Fan Speed 

 

Brief Explanation of the Code: 

A. Define Fuzzy Variables: Defines temperature, 

humidity, and fan speed using ctrl.Antecedent and 

ctrl.Consequent. 

B. Define Membership Functions: Uses triangular 

membership functions (fuzz.trimf) for each fuzzy 

variable. 

C. Define Fuzzy Rules: Uses ctrl.Rule to define 

each rule that determines the fan speed based on 

temperature and humidity. 

D. Control System and Simulation: Combines all 

the rules into a control system and simulates it for 

given input values (e.g., temperature = 28°C, 

humidity = 65%). 
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E. Output Plot: Displays the output fuzzy set and 

the resulting fan speed. 

Output: 

* The code computes and print the fan speed based 

on the input values. 

* The graphs generated shows the output fan speed 

based on the given input conditions. 

 

3. Simulate the fuzzy control system  

We model the fuzzy control system 

throughout a temperature and humidity range to 

observe the variation in fan speed under various 

scenarios.  

To comprehend the behaviour of the fuzzy 

control system, we compute the fan speed for every 

combination of temperature and humidity, loop 

through the set of values, and display the results in a 

3D surface map. 

As seen in figure 7, the python code 

produces a 3D surface map that illustrates how the 

fan speed varies with variations in temperature and 

humidity. 
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Figure 7: Fuzzy Control Surface for Fan Speed 

 

Brief Explanation of the Code 

A. Simulation Loop: Loops through all possible 

values of temperature (0–40°C) and humidity (0–

100%), computes the corresponding fan speed, and 

stores the results. 

B. 3D Plot: Uses matplotlib to create a 3D surface 

plot (plot_surface) that shows how fan speed changes 

with temperature and humidity. 

Output: 

a. The plot displays a 3D surface representing the fan 

speed over varying temperature and humidity levels. 

b. The colour gradient indicates different fan speed 

levels, providing a visual representation of how the 

system responds to various inputs. 

 

3. Train the neural network  

We link a neural network with a fuzzy logic 

system in order to train the neural network as part of 

a neuro-fuzzy control system. The goal is to enable 

the system to adjust and enhance its control over time 

by using the neural network to learn the mapping 

between the input variables (temperature and 

humidity) and the output (fan speed). 

 

Train the Neural Network: 

We use the following approach: 

* Data Generation: Generate training data by 

simulating the fuzzy control system over a range of 

temperature and humidity values. 

* Neural Network Design: Define a simple neural 

network using the TensorFlow or PyTorch library to 

learn from this data. 

* Training: Train the neural network on the 

generated data. 

* Evaluation: Evaluate the performance of the 

neural network in predicting fan speed. 

 

A. Generate the Training Data 

We use the fuzzy control system to generate 

a dataset of temperature, humidity, and the 

corresponding fan speed as shown in figure 8. 
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Figure 8: Data Distribution of the Project 

 

B. Neural Network Design and Training 

We define a simple neural network using TensorFlow to learn the fuzzy system's behaviour from the generated 

training data. 
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Result  
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Figure 9: Plot of Training and Validation Loss 

 

Explanation of the Code: 

1. Data Preparation: Creates training and test sets 

from the generated data. StandardScaler is used to 

standardize the data.  

2. Neural Network Model: TensorFlow's dense 

layers are used to build a straightforward feed-

forward neural network with a single hidden layer.  

3. Training: To minimize the mean squared error 

loss across 100 epochs, the model is trained using the 

Adam optimizer.  

4. Evaluation: To ensure convergence, the model is 

assessed using the test set, and the loss is shown. 

 

Evaluate the Trained Model: 

After the training of the model, evaluate its 

performance: 

1. Check the Training Loss: The loss plot shows 

how well the model is learning. A decreasing 

loss indicates that the model is learning 

effectively. 

2. Test the Neural Network: We use the trained 

model to predict the fan speed for new inputs 

and compare the results with the fuzzy logic 

output. 

 

C. Use the Trained Neural Network for 

Predictions 

To make predictions using the trained neural 

network, we simply use the model.predict() function: 

 

 
 

D. Prediction: The neural network predicts the fan 

speed for new temperature and humidity inputs 

(54.85%). 

 

5. Integrate neural and fuzzy models 

 We combine the neural network's learning 

capabilities with the interpretability of fuzzy logic, 

creating a Neuro-Fuzzy System. This system 

leverages the advantages of both approaches: the 

neural network’s ability to learn from data and the 

fuzzy system's ability to handle uncertainty and 

linguistic variables. 

 

Key Approach: Adaptive Neuro-Fuzzy Inference 

System (ANFIS): 
The Adaptive Neuro-Fuzzy Inference 

System (ANFIS) is a well-liked model that combines 

fuzzy logic concepts with neural networks. It 

modifies the parameters of a fuzzy inference system 

(FIS) using a hybrid learning approach that combines 

least-squares and backpropagation. 

To implement an ANFIS model, we: 

1. Define fuzzy membership functions for inputs. 

2. Construct a rule base for the fuzzy inference 

system. 
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3. Use a neural network training algorithm to learn 

the membership function parameters. 

 

Since ANFIS is not natively available in libraries like 

TensorFlow or PyTorch, we use the anfis package in 

Python, which is specifically designed for ANFIS 

modeling. 

 
 

Explanation of the Code 

* Data Preparation: Scales the input data and splits 

it into training and testing sets. 

* ANFIS Model Initialization: Creates an ANFIS 

model with Gaussian membership functions 

(gaussmf) and a specified number of fuzzy sets 

(num_mf). 

* Training: Trains the ANFIS model using the 

provided data for 100 epochs with a learning rate of 

0.01. 

* Evaluation: Computes the mean squared error 

(MSE) to evaluate the model's performance and plots 

the loss history. 

 
Figure 10: ANFIS Training Loss 
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Output: 

Running the above code: 

* Train the ANFIS model based on the provided 

data. 

* Display a plot of the training loss over the epochs 

as shown in figure 10. 

 

IV. FURTHER RESULT ANALYSIS 
Model Performance: 

To gain more insight into the model’s 

performance, let us consider the following.  

Here are a few more graphs and plots that we 

generate to visualize different aspects of our ANFIS 

model's performance: 

 

1. Predicted vs. Actual Values Plot 

This scatter plot shows the relationship 

between the actual and predicted fan speed values. It 

is useful for assessing how well the model 

predictions match the actual values. 

 

 

 
Figure 11: Predicted vs. Actual Values Plot 

 

2. Residual Plot 

A residual plot shows the differences 

between the predicted and actual values (residuals). 

This plot helps identify patterns in the residuals that 

might indicate model errors or biases. 
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Figure 12: Residual Plot 

 

3. Model Training Loss over Time (Log Scale) This plot shows the training loss on a logarithmic 

scale to help visualize more subtle changes in loss 

over time. 

 

 

 
Figure 13: Model Training Loss over Time Plot 

 

4. Feature Importance Plot 

To visualize which input features (e.g., 

temperature, humidity) are contributing most to the 

model's predictions, this plot is important. As 

clearing shown from the graph, temperature is 

contributing most of the model’s predictions. 

 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 6, Issue 09 Sep. 2024,  pp: 769-791  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0609769791         |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal      Page 788 

 

 
Figure 14: Feature Importance in ANFIS Model 

 

5. Learning Rate vs. Training Loss Plot 

This figure illustrates how varying learning 

rates affect training loss in order to determine the 

ideal learning rate. We must mimic the training 

process with different learning rates in order to 

generate the "Learning Rate vs. Training Loss" graph 

for a temperature control system. Here is the code to 

train multiple linear regression models, showing the 

training loss (mean squared error) for each learning 

rate, and simulating this scenario. 
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Explanation: 

* SGDRegressor from sklearn simulates a model that 

uses a learning rate during optimization. 

* We loop through several learning rates and 

calculate the training loss for each one. 

* The plot uses a logarithmic scale for the learning 

rate to capture the variations better. 

The code generates the Learning Rate vs. Training 

Loss plot for the temperature control system as 

shown in figure 15. 

 

 
Figure 15: Learning rate vs. training loss plot 

 

The plot shows the relationship between the learning 

rate and the training loss (Mean Squared Error) for 

the temperature control system. 

 

Explanation: 

* Learning Rate (X-axis, log scale): The learning 

rate controls how much the model's weights are 

adjusted in response to the gradient of the loss 

function. Smaller learning rates lead to smaller 

updates, while larger learning rates cause bigger 

jumps. 

* Training Loss (Y-axis): This measures how well 

the model is fitting the training data. A lower training 

loss means the model is performing better on the 

training set. 
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Key Observations: 

* Small Learning Rates (e.g., 0.0001): The training 

loss is relatively high. This is because the small 

learning rate causes the model to make very slow 

progress in adjusting weights, leading to underfitting. 

* Moderate Learning Rates (e.g., 0.01): The 

training loss decreases significantly, showing that the 

model is effectively learning and converging towards 

a better solution. 

* High Learning Rates (e.g., 0.5, 1): The training 

loss starts to increase again. This suggests that the 

model is overshooting optimal solutions due to large 

weight updates, which can cause poor convergence 

or even divergence. 

The plot demonstrates the trade-off between learning 

rate and training loss. A moderate learning rate 

(around 0.01) results in the best performance, while 

very low or high learning rates lead to poor model 

performance 

 

What Each Plot Represents: 

* Plot 1: Visualizes the predicted vs. actual fan speed 

values. Shows how well the predicted values match 

the actual values.  

* Plot 2: Shows the residuals (difference between 

actual and predicted values). Visualizes the residuals 

to identify any patterns or biases. 

* Plot 3: Displays the ANFIS training loss on a 

logarithmic scale. Demonstrates how the training loss 

decreases over time on a logarithmic scale 

* Plot 4: Illustrates the feature importance for your 

ANFIS model. Illustrates the importance of different 

input features for the model. 

* Plot 5: Shows how the learning rate impacts the 

final training loss. Displays the impact of different 

learning rates on the final training loss. 

 

By running this code, we were able to visualize all 

the graphs and gain insights into our model's 

performance.  

 

V. CONCLUSION: 
The investigation shows that the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model has 

the potential to be a reliable and efficient tool for 

controlling and forecasting complicated nonlinear 

systems, including fan speed regulation that depends 

on humidity and temperature inputs. A acceptable fit 

between expected and actual values is indicated by 

the assessment metrics, such as the Mean Squared 

Error and the residual analysis, indicating that the 

model successfully reflects the underlying patterns in 

the data. Moreover, the training loss visualization 

demonstrates a consistent decrease, indicating the 

model's capacity for long-term learning. In line with 

domain knowledge, feature importance analysis also 

emphasizes how important temperature and humidity 

are in deciding fan speed. By fusing neural network 

learning with fuzzy logic interpretability, ANFIS 

offers a potential method for creating intelligent 

control systems across a range of applications. Fuzzy 

logic's combination with other AI techniques, such 

neural networks and evolutionary algorithms, 

promises to expand intelligent systems' capabilities 

and open the door to more sophisticated and 

adaptable technologies as AI develops. 
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