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ABSTRACT 

This research analyzes the properties of a nonlinear 

operator A acting on functions u belonging to the 

domain D(A), which is a subset of a Banach space X 

(e.g.,L2( 0, 1 )). The operator A takes the form in 

(1.1). 

It is established that under certain assumptions on the 

operator A and the function F, the following 

properties hold: 𝐀 is accretive and M-accretive in 

the Banach space X, 𝐀 has a unique solution for 

every f ∈ X and λ > 0, 𝐀 is coercive and 

hemicontinuous and 𝐀 is stable, meaning small 

perturbations in the initial conditions lead to small 

changes in the solution. 

The proof of these properties relies on the theory of 

accretive operators, the Browder-Minty theorem, and 

the analysis of the fractional derivative and nonlinear 

terms. The stability analysis assumes that the 

nonlinear term F satisfies a Lipschitz condition and 

that the gradient term can be controlled by the 

function itself. These results establish the well-

posedness and stability of the operator A, which is 

crucial for the analysis and numerical approximation 

of problems involving fractional differential equations 

with nonlinear terms. 

Keyword: Fractional Nonlinear Partial Differential, 

Accretive Operators, Stability, Coercivity and Hemi 

continuity. 

 

I. INTRODUCTION 
Combining the intricacies of fractional 

calculus, nonlinear dynamics, and accretive operator 

theory, fractional nonlinear partial differential 

accretive operators (FNPDAOs) in closed, bounded, 

and continuous domains provide a complicated 

extension of classical partial differential equations. 

Because of its capacity to simulate intricate 

phenomena including memory effects, non-local 

interactions, and dissipative behaviours, this topic has 

attracted a lot of interest [1]. 

The characteristics of operators defined on 

function spaces are essential to comprehending the 

existence and uniqueness of solutions to distinct 

mathematical problems in the fields of functional 

analysis and partial differential equations. 

Au x =  
∂α

∂tα
u x + F(x, u(x), ∇u(x)) 1 

is one such operator. Here, α represents a fractional 

derivative, and F is a nonlinear function that relies on 

the function u, the spatial variable x, and its gradient 

∇u. Establishing the mathematical foundations 

required for the application of variational techniques 

and fixed-point theorems in the setting of nonlinear 

partial differential equations requires an investigation 

of this operator. 

Some important properties of the operator A that we 

will investigate are accretive, existence and unique, 

coercivity and hemicontinuity.  

- Coercivity; ensures that the operator provides a 

lower bound on the inner product of the operator 

applied to a function with that function itself, which is 

crucial for demonstrating the boundedness and 

stability of solutions [2]. 

  - Hemicontinuity; is a property that guarantees the 

continuity of the operator in a weak sense, allowing us 

to infer the convergence of sequences of functions in 

the context of the operator. 

Establishing the existence and uniqueness of solutions 

for such operators is crucial for their theoretical 

understanding and practical application. This 

introduction outlines an approach to prove the 

uniqueness of solutions using the Banach fixed-point 

theorem, also known as the contraction mapping 

principle. This approach requires careful analysis of 

the fractional derivative term and the nonlinear term 

F x, u x , ∇u x  . The fractional derivative is often 

handled using properties of fractional calculus, while 

the nonlinear term typically requires Lipschitz 

continuity assumptions. 
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This work is in line with Echude et al (2017, 

2024) were ‘a non-linear parabolic partial differential 

equation in a closed, bounded and continuous domain’ 

is now extended to ‘fractional nonlinear partial 

differential accretive operators in closed, bounded and 

continuous domains’. They investigated on a class of 

non-linear parabolic partial differential equation in a 

closed, bounded and continuous domain which is 

done by converting such a non-linear parabolic partial 

differential equation to an abstract Cauchy problem, 

the operator was shown to be m-accretive and 

therefore established that the partial differential 

equation has a solution by the fundamental results of 

accretive operators [3,4].  

The use of functional analysis techniques, 

particularly the theory of monotone operators and 

accretive operators, plays a crucial role in this 

analysis [5,6]. These tools allow for the treatment of a 

wide class of nonlinear problems and provide a robust 

framework for establishing well-posedness [7]. 

The nonlinear aspect of FNPDAOs 

introduces additional complexity, capturing 

phenomena such as self-organization, pattern 

formation, and chaotic behavior that are prevalent in 

many real-world systems [8]. Nonlinearity often leads 

to multiple equilibria, bifurcations, and sensitive 

dependence on initial conditions, making the analysis 

and numerical treatment of these operators 

particularly challenging [9]. 

The accretive property of these operators is 

crucial in ensuring the well-posedness of associated 

initial and boundary value problems [10]. Accretive 

operators generalize the concept of monotonicity and 

play a vital role in the study of dissipative systems, 

providing a framework for establishing existence, 

uniqueness, and stability of solutions [11]. 

The study of Fractional Nonlinear Partial 

Differential Accretive Operators in a closed, bounded, 

and continuous domains represents a confluence of 

several advanced mathematical concepts. It offers 

both theoretical challenges and practical applications, 

making it a rich area for ongoing research and 

interdisciplinary collaboration. 

 

II. MATHEMATICAL FORMULATION 
(Theorem 1) 

Let's denote the operator by A. A operates on 

functions u belonging to the domain D(A) which is a 

subset of a Banach space X (e.g.,L2([0, 1])). A takes 

the form: 

Au(x)  =  
∂α

∂tα
u(x)  +  F(x, u(x), ∇u(x)) 1.1 

where: 

 
∂α

∂tα
is the fractional derivative of order 

α (0 < α < 1) in the sense of Caputo. 

 F(x, u(x), ∇u(x)) represents the nonlinear 

term depending on the position (x), the function value 

(u(x)), and its gradient (∇u(x)). 

Then the operator Ais  

i. accretive and M-accretive,  

ii. exist and has a unique solution  

iii. coercivity and hemicontinuity 

iv. hence the operator A is Stable 

Proof  

 To show that the operator A, defined by (1.1) 

is accretive and M-accretive, where ubelonging to the 

domain D(A) ⊆ X which is a subset of a Banach space 

X (e.g.,L2( 0, 1 )),we will use the following 

definitions and properties: 

  

1.1.1 Accretive Operator 

 An operator A is accretivity if for all u, v ∈ D(A)  

and λ >  0: 

 u − v X ≤  u − v + λ A u − A v   
X

. 2 

Verification of Accretivity: 

 u − v X ≤  u − v + λ A u − A v   
X

. 3 

 u − v X
2
≤  u − v + λ A u − A v   

X

2
. 4 

≤  u − v X
2

+ 2λRe u − v, A u − A v  X

+ λ2 A u − A v  X
2

. 
 Since A is accretive, 

Re u − v, A u − A v  X ≥ 0, 
Therefore,   

 u − v X
2

=  u − v X
2

+ 2λRe u − v, A u −
AvX+λ2Au−AvX2.   5 

Since 𝑅𝑒 𝑢 − 𝑣, 𝐴 𝑢 − 𝐴 𝑣  𝑋 ≥ 0, it follows that 

(5) become: 

=  𝑢 − 𝑣 𝑋
2

+ 𝜆2 𝐴 𝑢 − 𝐴 𝑣  𝑋
2
. 6 

 

2.1.2 𝑀-Accretive Operator 

An operator A is 𝑀-accretive if 𝐴 is accretive and the 

range of 𝐼 +  𝜆𝐴 is the whole space 𝑋 for 𝜆 > 0, i.e.,    

𝐼 +  𝜆𝐴 = 𝑋 for all 𝜆 > 0 

Verification of M-Accretivity 

To verify that A is 𝑀-accretive, we need to show that 

for every 𝑓 ∈ 𝑋 and 𝜆 > 0, there exists 𝑢 ∈ 𝐷(𝐴) 

such that: 

𝑢 + 𝜆𝐴(𝑢)  =  𝑓.    7 

This implies combining (1) for (7) we have: 

𝑢 + 𝜆  
𝜕𝛼𝑢

𝜕𝑡 𝛼
+  𝐹 𝑥, 𝑢 𝑥 , 𝛻𝑢 𝑥   =  𝑓. 8 

Rewriting (8), we get: 

𝑢 + 𝜆
𝜕𝛼𝑢

𝜕𝑡 𝛼
+  𝜆𝐹 𝑥, 𝑢 𝑥 , 𝛻𝑢 𝑥   =  𝑓. 

 9 

This verified that A is 𝑀-accretive 
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2.2.1 Existence of Solution: 

By the theory of accretive operators, since 𝐴 is 

accretive, the operator 𝐼 +  𝜆𝐴 is also accretive. Thus, 

by the Browder-Minty theorem, it is surjective and 

therefore, for every 𝑓 ∈ 𝑋 and 𝜆 > 0, there exists 

𝑢 ∈ 𝐷(𝐴) such that: 

𝑢 + 𝜆𝐴(𝑢)  =  𝑓. 
Therefore, the operator 𝐴, defined by (1.1) and (9) is 

accretive and 𝑀-accretive in the Banach space 

𝑋 =  𝐿2([0,1]). 
2.2.2 Uniqueness: If 𝐴 is accretive, then 𝐴 has a 

unique solution. Suppose 𝑢1 and 𝑢2are two solutions, 

then for any 𝜆 > 0: 

 𝑢1 − 𝑢2 + 𝜆(𝐴𝑢1 − 𝐴𝑢2) ≥  𝑢1 − 𝑢2 . 10 

Since 𝑢1 and 𝑢2 are solutions, 𝐴𝑢1 = 𝐴𝑢2, hence: 

 𝑢1  −  𝑢2 ≥  𝑢1  −  𝑢2 .  

 11 

This implies 𝑢1 = 𝑢2, ensuring uniqueness. 

By verifying the accretivity and m-accretivity 

conditions, we can conclude that the operator 𝐴 

ensures the existence and uniqueness of the solution 𝑢 

for the given problem. 

 

2.3.1 Coercivity 

To show that 𝐴 is coercive, we need to demonstrate 

that there exists a constant 𝑐 > 0 such that 

 𝐴𝑢, 𝑢 ≥ 𝑐 𝑢 2 − 𝛽   

 12 

for all 𝑢 ∈ 𝐷(𝐴)  and some constant 𝛽. 
Combining (1)and (12), we have: 

 𝐴 𝑢 , 𝑢 =  
𝜕𝛼𝑢

𝜕𝑡 𝛼
, 𝑢 +  𝐹 𝑥, 𝑢, 𝛻𝑢 , 𝑢 . 

 13 

Assume that 𝐹 is such that: 

 𝐹 𝑥, 𝑢, 𝛻𝑢 , 𝑢 ≥ 𝜅 𝑢 2 − 𝛽  
 14 

for some 𝜅 > 0 and constant 𝛽. 

Next, consider the term 
𝜕𝛼𝑢

𝜕𝑡 𝛼
, 𝑢 . By the properties of 

the fractional derivative and the function space 𝑋, we 

assume: 

 
𝜕𝛼𝑢

𝜕𝑡 𝛼
, 𝑢 ≥ 0. 

Combining these results, we get: 

 𝐴 𝑢 , 𝑢 =  
𝜕𝛼𝑢

𝜕𝑡 𝛼
, 𝑢 +  𝐹 𝑥, 𝑢, 𝛻𝑢 , 𝑢 ≥ 0 +

𝜅 𝑢 2 − 𝛽 = 𝜅 𝑢 2 − 𝛽    

 15 

Thus, 𝐴 is coercive with 𝑐 = 𝜅. 
 

2.3.2 Hemicontinuity 

To show that 𝐴 is hemicontinuous, we need to 

demonstrate that for all 𝑢, 𝑣 ∈ 𝐷(𝐴) and for all 

𝜆 ∈ ℝ, the map 𝑡 ↦   𝐴(𝑢 + 𝑡𝑣),𝑤   is continuous for 

all 𝑤 ∈ 𝑋. 

Consider 𝐴 𝑢 +  𝑡 𝑣 =
𝜕𝛼 (𝑢+𝑡𝑣)

𝜕𝑡 𝛼
+  𝐹 𝑥, 𝑢 +

𝑡𝑣, 𝛻(𝑢 + 𝑡𝑣) ,     

 16 

We need to show that  𝐴(𝑢 + 𝑡 𝑣), 𝑤  is continuous in 

𝑡: 

 𝐴 𝑢 + 𝑡 𝑣 , 𝑤 =  
𝜕𝛼 (𝑢+𝑡𝑣)

𝜕𝑡 𝛼
, 𝑤 +   𝐹 𝑥, 𝑢 +

𝑡𝑣, 𝛻 𝑢 + 𝑡𝑣 , 𝑤  .    
 17 

The first term,  
𝜕𝛼 (𝑢+𝑡𝑣)

𝜕𝑡 𝛼
, 𝑤 , is continuous in 𝑡 by the 

properties of the fractional derivative and linearity: 

 
𝜕𝛼  𝑢+𝑡𝑣 

𝜕𝑡 𝛼
, 𝑤 =  

𝜕𝛼𝑢

𝜕𝑡 𝛼
+ 𝑡

𝜕𝛼𝑣

𝜕𝑡 𝛼
, 𝑤 .  18 

For the second term, we assume 𝐹 is such that 

 𝐹 𝑥, 𝑢 + 𝑡𝑣, 𝛻 𝑢 + 𝑡𝑣 , 𝑤   is continuous in 𝑡: 
 𝐹 𝑥, 𝑢 + 𝑡𝑣, 𝛻 𝑢 + 𝑡𝑣 , 𝑤  .  
 19 

Thus, 𝑡 ↦   𝐴(𝑢 + 𝑡 𝑣), 𝑤   is continuous in 𝑡, 
proving the hemicontinuity of 𝐴. 
𝐴 is accretive and 𝑀-accretive and is both coercive 

and hemicontinuous under the given assumptions 

about the operator and the function 𝐹. 

 

III. STABILITY ANALYSIS 
3.1 Definition of Stability 

An operator 𝐴 is stable if small perturbations in the 

initial conditions lead to small changes in the solution. 

Formally, for a solution 𝑢(𝑡) of the equation 𝑢′ = 𝐴𝑢, 
stability means that there exists a constant 𝐾 > 0 such 

that for all initial conditions 𝑢0 and 𝑣0 , 
 𝑢(𝑡)  −  𝑣(𝑡)  ≤ 𝐾  𝑢0 − 𝑣0 .  20 

And the Caputo fractional derivative of order 𝛼 is 

defined as 

𝐷𝑡
𝛼𝑢 𝑡 =

1

𝛤(1−𝛼)
  

𝑢 ′(𝜏)

(𝑡−𝜏)𝛼
 𝑑𝜏

𝑡

0
,  

 21 

where 0 < 𝛼 < 1 and 𝛤(. ) is the Gamma function. 

Assume that the nonlinear term 𝐹(𝑥, 𝑢(𝑥), 𝛻𝑢(𝑥)) 

satisfies a Lipschitz condition in 𝑢 and 𝛻𝑢: 

 𝐹 𝑥, 𝑢, 𝛻𝑢 − 𝐹(𝑥, 𝑣, 𝛻𝑣) ≤ 𝐿1 𝑢 − 𝑣 +
𝐿2 𝛻𝑢 − 𝛻𝑣 ,     

 22 

for some constants 𝐿1, 𝐿2 > 0. 
 

3.2 Stability Conditions 

To begin the stability of the operator 𝐴, we need to 

show that the solutions of the equation 
𝑑

𝑑𝑡
𝑢 = 𝐴𝑢 

satisfy a stability condition. 

Let define an energy functional 𝐸(𝑡) as 

𝐸(𝑡) =   𝑢(𝑡) 2 .    23 

Differentiate 𝐸(𝑡)in (23) with respect to 𝑡: 
𝑑

𝑑𝑡
𝐸 𝑡 = 2  𝑢 𝑡 ,

𝑑

𝑑𝑡
𝑢(𝑡)  = 2 𝑢 𝑡 , 𝐴𝑢(𝑡) .24 

Substitute (1) into the expression in (24) we have: 
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𝑑

𝑑𝑡
𝐸 𝑡 = 2  𝑢 𝑡 ,

𝜕𝛼

𝜕𝑡 𝛼
𝑢(𝑡)  +  𝐹(𝑥, 𝑢(𝑡), 𝛻𝑢(𝑡))  

     

 25 

For the fractional derivative term, using the properties 

of the Caputo derivative, we have 

 u t ,
d

dt
u(t)  ≤ −C1 u(t) 2  

 26 

for some constant C1 > 0 (assuming the fractional 

derivative contributes a damping effect). 

For the nonlinear term, using the Lipschitz condition 

of (22), we get 

 u t , F(x, u(t), ∇u(t)) ≤ L1 u t  2 + L2 ∇u t  2. 
     

 27 

Combining the terms in (25), (26) and (27), we obtain 
d

dt
E t ≤ −C1 u t  2 + L1 u t  2 + L2 ∇u t  2. 

     

 28 

Assuming that the gradient term  ∇u t  2 can be 

controlled or bounded by  u t  2 , we have 
d

dt
E t ≤ −C1 + L1 + L2.   29 

For stability, we need 
d

dt
E t ≤ 0, which requires 

−C1 + L1 + L2 ≤ 0 ⇒ C1 ≥ L1 + L2.
 30 

Thus, the operator A defined by (1), is stable if the 

constants C1 (from the fractional derivative term) and 

L1, L2 (from the nonlinear term F satisfy the condition 

in (30). 

This ensures that small perturbations in the initial 

conditions result in small changes in the solution, 

thereby establishing the stability of the operator A. 
 

IV. DISCUSSION OF RESULT 
In order to prove that there are solutions to 

(1), the operator must be monotonic, which is implied 

by the Accretivity condition. This condition is further 

strengthened by the M-accretivity, which guarantees 

that the operator may be approximated by a series of 

strongly monotone operators and that the range of A is 

closed. This ensures that solutions may be discovered 

even in cases where the operator is not linear, which 

makes it very helpful in the context of nonlinear 

issues. The application of fixed-point theorems or the 

Banach contraction principle as seen in [4], can be 

instrumental in proving these results, especially when 

F satisfies certain growth conditions. 

To create boundedness of solutions and 

prevent blow-up in limited time, this condition for 

coercivity makes sure that the energy associated with 

the operator rises sufficiently rapidly as the norm of u 

increases. The employment of variational techniques 

to prove existence findings frequently requires 

coercivity. 

The property of Hemicontinuity ensures that 

small perturbations in the input lead to controlled 

changes in the output, which is particularly important 

in nonlinear settings where solutions may be sensitive 

to initial conditions. 

In summary, the operator A is shown to be 

accretive, M-accretive, coercive, and hemicontinuous, 

and its stability is analyzed by considering the energy 

functional and the properties of the fractional 

derivative and the nonlinear term. 

 

V. CONCLUSION 
We have successfully demonstrated that in 

the Banach space X. the operator A has a unique 

solution, u ∈ D A . The operator A defined by the 

fractional derivative and a nonlinear term exhibits key 

properties such as accretivity, M-accretivity, 

coercivity, hemicontinuity, and its stability is 

analyzed by considering the energy functional and the 

properties of the fractional derivative and the 

nonlinear term. 

The mathematical study of fractional 

differential equations and its applications in several 

domains will benefit greatly from this discovery. 
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