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ABSTRACT: A fractional non-linear partial 

differential equation with boundary problems was 

investigated in a closed, bounded and continuous 

domain by converting such a fractional nonlinear 

partial differential equation (operator) into an 

abstract Cauchy problem. The study extends an 

existing theory in functional analysis to fractional 

differential, this provided some new insights into 

non-local interactions and memory effects. The key 

results were obtained by formulating a mathematical 

problem for such an operator and using some 

assumptions, including the solutions' existence, 

uniqueness, and regularity theorem. Our findings in 

some way contribute to the growing field of 

fractional calculus and its applications in various 

scientific fields. 
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I. INTRODUCTION 
In a recent year, fractional calculus has 

gained significant attention as a powerful 

mathematical tool because ofits ability to model 

complex phenomena in various fields, including 

physics, engineering, biology, and finance [1, 2]. 

These operators play a crucial role in this study and 

are characterised by fractional derivativesi.e. there 

are non-integer order derivatives, which can better 

provide a more accurate description of complex 

phenomena compared to the usual traditional 

integer-order derivatives.In particular, the study of 

fractional partial differential equations (FPDEs) 

hasalso gained significant attention among 

researchers in this field due to their ability to capture 

non-local and memory effects in system dynamics 

[3, 4] and this also enriching our understanding of 

the mathematical framework for describing the 

behaviour of physical systems that exhibit non-local 

dynamics and to modal physical processes with 

accuracy in real life situations. 

In this article, FPDEs involving nonlinear 

operators introduce some layer of complexity and 

such pose unique challenges in establishing 

existence and uniqueness solutions. The nonlinearity 

introduces additional complexities that require 

specialized techniques and analysis [5, 6].  

The fractional nonlinear partial differential 

operators defined on closed, bounded, and 

continuous domains are the major point of this 

research. Our choice of closed, bounded and 

continuous domains provides a solid framework for 

the study of fractional non-linear partial differential 

equations [7]. It is in good alignment with the finite 

nature of many physical systems and gives the 

mathematical foundation required for a thorough 

investigation employing established techniques from 

functional analysis.Furthermore, the choice of the 

domain closed, bounded, and continuous, was 

introduced to help ensure the well-posedness of the 

fractional nonlinear partial differential equation, this 

space ensures that mathematical properties hold. 

The operators in this study will help mathematicians 

develop tools to analyze solutions of fractional 

nonlinear partial differential equations. 

Our major goal of this article in a closed, 

bounded, and continuous domain, is to examine the 

theoretical foundation and practical implications of 

a fractional non-linear partial differential operator. 

This work is an extension of Echudeet al 

(2017)were‘a non-linear parabolic partial 

differential equation in a closed, bounded and 

continuous domain’ is now extended to ‘fractional 
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nonlinear partial differential operators in closed, 

bounded and continuous domains’.Theyinvestigated 

on a non-linear parabolic partial differential 

equation in a closed, bounded and continuous 

domain which is doneby converting such a non-

linear parabolic partial differential equation to an 

abstract Cauchy problem, the operator was shown to 

be m-accretive and therefore established that the 

partial differential equation has a solution by the 

fundamental results of accretive operators[8].  

Recent developments in fractional calculus 

have also looked into how fractional calculus relates 

to other mathematical ideas, like measure 

differential equations and operators of the Stieltjes 

type [9, 10]. These connections have expanded 

fractional calculus's field of application and created 

new directions for the investigation of nonlinear 

FPDEs.  

Fractional Nonlinear Partial Differential 

Operators in Closed, Bounded, and Continuous 

Domains is a rapidly developing field of study with 

a wide range of applications and persistent 

challenges. This vital field of study is still being 

advanced by the creation of strong mathematical 

frameworks and the investigation of innovative 

problem-solving strategies. 

 

II. PRELIMINARIES 
- X is a Banach space equipped with a norm  .  . 

- The operator A: X → X is a nonlinear operator. 

- The function f: [0, T] × X → X is a given nonlinear 

function. 

- The initial condition u 0 = u0is given, where 

u0 ∈ X. 
- Let X is a Banach Space and consider the Caputo 

fractional derivative Dt
αu(t) of order 𝛂 ∈ (𝟎,𝟏)is 

defined by 

Dt
αu t =

1

Γ(1 − α)
  

u′(s)

(t − s)α
 ds

t

0

. 

Where 𝐮′(𝐬)is the derivative of 𝐮 with respect to 𝐬 
Γ is the Gamma function.   

 

2.1 Mathematical Formulation: 

In this article, we focus on analysing on fractional 

nonlinear partial differential equationsaccretive 

operator in a closed, bounded, and continuous 

domain. The mathematical problem can be 

formulated as follows: 

 
Dt
αu t = A u t  + f t, u t  ,     t ∈ (0, T]

u 0 = u0

  

    1 

Dt
α  is the Caputo fractional derivative of order 

α ∈  (0,1) with respect to time t, A is a nonlinear 

accretive operator defined on a Banach space X, f is 

a given nonlinear function. 

 

Theorem 1 

Let X be a Banach space, A: X → X a nonlinear 

operator, f: [0, T]  × X → X a nonlinear function, and  

αϵ(0, 1). We consider the Cauchy problem: 

Dt
αu(t)  =  A(u(t))  +  f(t, u(t)), t ∈ (0, T] 

    1.1 

 

III. EXISTENCE OF SOLUTIONS TO 

THEOREM 1 
To establish the existence and uniqueness of 

solutions, we employ the Banach fixed-point 

theorem. Define the operator 𝒯: C([0, T]  →
C([0, T], X) as follows: 

   Let C =  C([0, T], X) be the Banach space of 

continuous functions from [0, T] to X. Define the 

operator 𝒯: C → C as: 

 𝒯u  t =

u0 +
1

Γ(α)
  t − s α−1A u s  ds +

t

0

1

Γ(α)
  t −

t

0

sα−1fs, usds.    
 2 

𝒯 is well-defined since A and f are continuous. 

To apply the Banach fixed-point theorem 

(contraction mapping principle), we need to show 

that the integral operator 

 𝒯u  t =

u0 +
1

Γ(α)
  t − s α−1A u s  ds +

t

0

1

Γ(α)
  t −

t

0

sα−1fs, usds.    
 3 

is a contraction on a suitable complete metric space 

(typically a Banach space of continuous functions 

on ([0, T]) with values in (X)). 

 

3.1 Continuity of 𝓣: 

 For u, v ∈ C, we have: 

 𝒯u − 𝒯v =  
1

Γ α 
  t − s α−1 A u s  −

t

0

Avsds+1Γ(α)0tt−sα−1[fs, us−fs, vs]ds 

   4 

≤
1

Γ α 
  t − s α−1 A u s  − A v s   ds

t

0
+

1

Γ(α)
  t − s α−1 f s, u s  − f s, v s   ds

t

0
 

    5 

 ≤
1

Γ α 
  t − s α−1L u(s)− v s  ds

t

0
+

1

Γ(α)
  t − s α−1M u(s) − v(s) ds

t

0
 6 

 ≤ 𝐋 u − v 
1

Γ α 
  t − s α−1ds

t

0
+

𝐌 u − v 
1

Γ(α)
  t − s α−1ds

t

0
  7 
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 ≤ 𝐋 u − v 
tα

Γ α+1 
+ 𝐌 u − v 

tα

Γ α+1 

     8 

 ≤  𝐋 + 𝐌  u − v 
tα

Γ α+1 
.  9 

Therefore, 𝒯 is continuous 

 

3.2 Compactness of 𝓣: 
For 𝑢 ∈ 𝐶, let 𝐵 = 𝑠𝑢𝑝𝑡∈[0,𝑇] 𝑢(𝑡) . Then: 

 𝒯𝑢 =  
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1𝐴 𝑢 𝑠  𝑑𝑠
𝑡

0
+

1𝛤(𝛼)0𝑡𝑡−𝑠𝛼−1𝑓𝑠, 𝑢𝑠𝑑𝑠  10 

 ≤
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1 𝐴 𝑢 𝑠   𝑑𝑠
𝑡

0
+

1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1 𝑓 𝑠,𝑢 𝑠   𝑑𝑠
𝑡

0
  11 

 ≤
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1𝐿 𝑢(𝑠) 𝑑𝑠
𝑡

0
+

1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1𝑀 𝑢(𝑠) 𝑑𝑠
𝑡

0
  12 

 ≤ 𝐿𝐵
𝑡𝛼

𝛤 𝛼+1 
+ 𝑀𝐵

𝑡𝛼

𝛤 𝛼+1 
  13 

  ≤  𝐿 + 𝑀 𝐵
𝑡𝛼

𝛤 𝛼+1 
. 14 

Therefore, 𝒯 maps 𝐶 to a bounded set in 𝐶. 
 

3.4 Fixed Point: 

By the Schauder Fixed Point Theorem, 𝒯 has a 

fixed point 𝑢 ∈ 𝐶, which is a solution to the Cauchy 

problem in (1.1). 

 

3.5 Uniqueness of Solutions to theorem 1 

3.5.1 Contradiction: 

Suppose there are two solutions 𝑢1,𝑢2 ∈ 𝐶, to the 

Cauchy problem. Then: 

𝐷𝑡
𝛼(𝑢1 − 𝑢2)(𝑡)  =  𝐴(𝑢1(𝑡))  −  𝐴(𝑢2(𝑡))  +

 𝑓(𝑡,𝑢1(𝑡))  −  𝑓(𝑡,𝑢2(𝑡)).  15 

Integrating both sides from 0 to 𝑡, we get: 
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1[𝐴 𝑢1 𝑠  −
𝑡

0

𝐴𝑢2𝑠]𝑑𝑠+1𝛤(𝛼)0𝑡𝑡−𝑠𝛼−1𝑓𝑠, 𝑢1𝑠−𝑓𝑠,𝑢2𝑠𝑑𝑠=0.
   16 

By the same argument as in the existence proof, we 

have: 
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1[𝐴 𝑢1 𝑠  −
𝑡

0

𝐴𝑢2𝑠]𝑑𝑠+1𝛤(𝛼)0𝑡𝑡−𝑠𝛼−1𝑓𝑠, 
𝑢1𝑠−𝑓𝑠,𝑢2𝑠𝑑𝑠≤𝑳+𝑴𝑢1−𝑢2𝑡𝛼𝛤𝛼+1.17 

Since 𝑢1,𝑢2 ∈ 𝐶, we have  𝑢1 − 𝑢2 ≤ 𝐵.  
Therefore (17) become:  

1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1[𝐴 𝑢1 𝑠  −
𝑡

0

𝐴𝑢2𝑠]𝑑𝑠+1𝛤(𝛼)0𝑡𝑡−𝑠𝛼−1𝑓𝑠, 
𝑢1𝑠−𝑓𝑠,𝑢2𝑠𝑑𝑠≤𝑳+𝑴𝑩𝑡𝛼𝛤𝛼+1. 18 

Since 𝑡 ∈  0,𝑇 , we have 𝑡𝛼 ≤ 𝑇𝛼 .  Therefore (18) 

become: 
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1[𝐴 𝑢1 𝑠  −
𝑡

0

𝐴 𝑢2 𝑠  ]𝑑𝑠 +
1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1 𝑓 𝑠,𝑢1 𝑠  −
𝑡

0

𝑓 𝑠,𝑢2 𝑠   𝑑𝑠 ≤  𝑳 + 𝑴 𝑩
𝑇𝛼

𝛤 𝛼+1 
. 19 

Gronwall’s Inequality: 

Applying Gronwall’s Inequality for fractional 

differential equations in (19), we obtain: 
 𝑢1(𝑡) − 𝑢2(𝑡) ≤ 0   ∀𝑡 ∈  0,𝑇 .  20 

Hence, 𝑢1(𝑡) = 𝑢2(𝑡). 
Under the assumptions that 𝐴 and 𝑓 are continuous 

and satisfy appropriate Lipschitz conditions, the 

Cauchy problem has a unique solution 𝑢 𝑡  in the 

Banach space 𝑋. 
Thus, 𝒯 is a contraction mapping for sufficiently 

small 𝑇, ensuring the existence of a unique fixed 

point 𝑢, which is the solution to the Cauchy 

problem.  

Thus, we have established the existence and 

uniqueness of the solution 𝑢 ∈ 𝐶( 0,𝑇 ,𝑋) to the 

Cauchy problem (1.1) 

 

IV. REGULARITY OF SOLUTIONS TO 

THEOREM 1 
Under the above assumptions, we can establish the 

existence and regularity of solutions to the fractional 

nonlinear PDE with an accretive operator. 

To prove the Regularity Theorem for the solution 𝑢 

of the Cauchy problem (1) 

𝐷𝑡
𝛼𝑢(𝑡)  =  𝐴(𝑢(𝑡))  +  𝑓(𝑡,𝑢(𝑡)),

𝑡 ∈ (0,𝑇]     𝑢(0) = 𝑢0 

where 𝐷𝑡
𝛼  denotes the Caputo fractional derivative 

of order 𝛼 ∈ (0, 1),  𝐴: 𝑋 → 𝑋 is a nonlinear 

operator on the Banach space 𝑋, and 𝑓: [0,𝑇] × 𝑋 →
𝑋is a nonlinear function, we aim to show that 

𝑢 ∈ 𝐶  0,𝑇 ;  𝑋 ∩ 𝐶1  0,𝑇 ;𝑋 ,we assume the 

following regularity conditions: 

Assumption 1 (Initial Condition Regularity): 

𝑢0 ∈ 𝐷(𝐴), 
where 𝐷(𝐴) denotes the domain of the operator 𝐴. 

 

Assumption 2 (Regularity of 𝑨): 

𝐴:𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a nonlinear operator satisfying: 

 

1. Local Lipschitz Continuity: 

∥ 𝐴(𝑢) − 𝐴(𝑣) ∥≤ 𝐿𝐴 ∥ 𝑢 − 𝑣 ∥,∀𝑢, 𝑣 ∈ 𝐷(𝐴), 
Where 𝐿𝐴  is a Lipschitz constant. 

 

2. Growth Condition: 

∥ 𝐴 𝑢 ∥≤ 𝐾𝐴 1+∥ 𝑢 ∥ ,∀𝑢 ∈ 𝐷 𝐴 , 
Where𝐾𝐴is a positive constant. 
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Assumption 3 (Regularity of 𝒇): 

𝑓: [0,𝑇] × 𝑋 → 𝑋 is a continuous function 

satisfying: 

 

1. Local Lipschitz Continuity in 𝒖: 

∥ 𝑓(𝑡,𝑢) − 𝑓(𝑡, 𝑣) ∥≤ 𝐿𝑓(𝑡) ∥ 𝑢 − 𝑣 ∥, 

 ∀𝑡 ∈ [0,𝑇], ∀𝑢, 𝑣 ∈ 𝑋, 
where 𝐿𝑓(𝑡)is a Lipschitz constant that may depend 

on 𝑡. 
 

2. Growth Condition:  ∥ 𝒇(𝒕,𝒖) ∥≤
𝑲𝒇(𝟏+∥ 𝒖 ∥), 

∀𝒕 ∈ [𝟎,𝑻],  ∀𝒖 ∈ 𝑿, 
where 𝑲𝒇 is a positive constant. 

 

Assumption 4 (Regularity of the Caputo 

Fractional Derivative): 

The Caputo fractional derivative 𝐷𝑡
𝛼𝑢(𝑡) of order 

𝜶 ∈ (𝟎,𝟏)is defined by 

𝐷𝑡
𝛼𝑢 𝑡 =

1

𝛤(1 − 𝛼)
  

𝑢′(𝑠)

(𝑡 − 𝑠)𝛼
 𝑑𝑠

𝑡

0

. 

Where 𝒖′(𝒔) denotes the derivative of 𝒖 with 

respect to 𝒔 and 𝛤 is the Gamma function. 

For 𝒖 ∈ 𝑪𝟏([𝟎,𝑻],𝑿) (the space of continuously 

differentiable functions from [𝟎,𝑻] to 𝑿), the 

Caputo fractional derivative 𝐷𝑡
𝛼𝑢 𝑡 exists and is 

continuous on (𝟎,𝑻]. 
 

Proof: 

4.1 Continuity on [0,𝑇] 
Since 𝑢 is a solution to the differential equation (1), 

it follows that 𝑢 ∈ 𝐶  0,𝑇 ;  𝑋 . This is because 

𝐷𝑡
𝛼𝑢(𝑡), 𝐴(𝑢(𝑡)), and 𝑓(𝑡,𝑢(𝑡)) are all continuous 

functionsof 𝑡 on [0,𝑇]by equation (4 – 9) and hence 

𝑢(𝑡) inherits this continuity of equation (4 – 9). 

4.2 Differentiability on [0,𝑇] 

To establish 𝑢 ∈ 𝐶1  0,𝑇 ;𝑋 , we need to show 

that 𝑢′(𝑡) exists and is continuous on (0,𝑇]. 
Existence of 𝑢′(𝑡): 

The Caputo fractional derivative 𝐷𝑡
𝛼𝑢(𝑡) is defined 

by 

𝐷𝑡
𝛼𝑢 𝑡 =

1

𝛤(1−𝛼)
  

𝑢 ′(𝑡)

(𝑡−𝑠)𝛼
 𝑑𝑠

𝑡

0
+

𝑢(0)

𝛤(1−𝛼)
𝑡(1−𝑡).

     

 21 

For 𝑢 ∈ 𝐶  0,𝑇 ;  𝑋 , the right-hand side is well-

defined and continuous on (0,𝑇]. Therefore, 𝑢′(𝑡) 

exists for 𝑡 ∈ (0,𝑇]. 
4.3 Continuity of 𝑢′ 𝑡 : 
Since 𝑢 is continuous on [0,𝑇],  𝑢′(𝑡) is the 

pointwise limit of a sequence of continuous 

functions (constructed from the definition of 

𝐷𝑡
𝛼𝑢 𝑡 ), implying  𝑢′(𝑡) itself is continuous on 

(0,𝑇]. 
Therefore, 𝑢 satisfies 𝑢 ∈ 𝐶  0,𝑇 ;  𝑋  and 𝑢 ∈

𝐶1  0,𝑇 ;𝑋 . This completes the proof of the 

Regularity Theorem. 

By demonstrating the continuity of 𝑢 on 

[0,𝑇] and the existence and continuity of 𝑢′(𝑡) on 

(0,𝑇], we have established that 𝑢 ∈ 𝐶  0,𝑇 ;  𝑋 ∩

𝐶1  0,𝑇 ;𝑋 . This regularity ensures that 𝑢 is 

sufficiently smooth for further mathematical 

analysis and applications in the context of fractional 

differential equations. 

The regularity of solutions depends on the 

properties of the operator 𝐴 and the function 𝑓. If 𝐴 

and 𝑓 are sufficiently smooth, the solution 𝑢(𝑡) 

inherits this regularity. More specifically, if 𝐴 and 𝑓 

are both continuous and differentiable, then 𝑢(𝑡) is 

continuously differentiable in 𝑡.Stronger smoothness 

assumptions on 𝐴 and 𝑓 can produce higher-order 

regularity. 

 

V. DISCUSSION OF RESULTS 
Using the Banach fixed point theorem, we 

proved the existence and uniqueness of a 

solution 𝑢 ∈ 𝐶([0,𝑇],𝑋) to the Cauchy problem 

(1.1) for the results to hold 

Considering a significant and ongoing topic 

of research in fractional calculus, this finding offers 

a strong theoretical framework for analysing the 

Cauchy issue for fractional nonlinear partial 

differential equations in Banach spaces [1]. These 

findings offer a thorough foundation for 

comprehending how fractional Cauchy problem 

solutions behave in Banach spaces. Rich 

mathematical structures and behaviours result from 

the interaction of the fractional derivative, the 

nonlinear operator 𝐴, and the nonlinear function 𝑓.  

 

VI. EXAMPLES AND APPLICATIONS 
We illustrate the following examples of 

differential equations involving the Caputo 

fractional derivative 𝐷𝑡
𝛼  of order 𝛼 ∈ (0, 1), applied 

to a Banach space 𝑋, and their applications to 

demonstrate the applicability of the resulting 

conclusions. 

 Consider the fractional diffusion equation: 

𝐷𝑡
𝛼𝑢 𝑡 = ∆𝑢 𝑡 + 𝑓 𝑢 𝑡  ,

𝑡 ∈  0,𝑇     𝑢 0 = 𝑢0, 
where ∆ denotes the Laplace operator on 𝑋, and 

𝑓: 𝑋 → 𝑋 is a nonlinear function. 

This is an example of the equation model’s 

anomalous diffusion phenomena where 𝐷𝑡
𝛼𝑢 𝑡  

represents the fractional derivative of 𝑢 𝑡  with 

respect to time 𝑡. 
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 Consider the fractional reaction-diffusion 

equation:  

𝐷𝑡
𝛼𝑢 𝑡 = ∆𝑢 𝑡 + 𝑔 𝑢 𝑡  ,   

𝑡 ∈  0,𝑇     𝑢 0 = 𝑢0, 
where ∆ is the Laplace operator on 𝑋, and 𝑔: 𝑋 → 𝑋 

is a nonlinear reaction term [11] 

 This equation is used in mathematical biology to 

model population dynamics where the population 

density 𝑢 𝑡  diffuses through space and undergoes 

nonlinear reactions governed by 𝑔(𝑢 𝑡 ). 

 Consider the fractional Allen-Cahn 

equation: 

𝐷𝑡
𝛼𝑢 𝑡 = −∆𝑢 𝑡 +  𝑢 𝑡 −  𝑢 𝑡 3,  

𝑡 ∈  0,𝑇     𝑢 0 = 𝑢0. 
where ∆ denotes the Laplace operator on 𝑋. [12] 

Phase transitions and pattern development in 

materials are described by this equation in the field 

of materials science. The Laplacian of 𝑢(𝑡) is 

represented by the expression −∆𝑢 𝑡 ), and 

nonlinear interactions are introduced by 𝑢 𝑡 −
 𝑢 𝑡 3 .Think about the Burgers' equation for 

fractions:  

 Think about the Burgers' equation for 

fractions:  

𝐷𝑡
𝛼𝑢 𝑡 +  𝑢 𝑡 𝐷𝑥𝑢 𝑡 =  𝐴 𝑢 𝑡  ,

𝑡 ∈  0,𝑇     𝑢 0 = 𝑢0, 
 

where  𝐴 ↓ 𝑋 → 𝑋  is a nonlinear operator 

and 𝐷𝑥 is the spatial derivative. 

In fluid dynamics, this equation is used to simulate 

the behaviour of nonlinear shocks and waves. The 

convective term is represented by the term 

𝑢 𝑡 𝐷𝑥𝑢 𝑡 , while nonlinear interactions are 

introduced by the term A(u(t)).  

In conclusion, these examples show how 

Caputo fractional derivatives can be used to 

simulate a variety of processes in a range of 

scientific fields, including as materials science, 

physics, and biology. The solutions 𝑢(𝑡) dwell in a 

flexible framework made possible by the choice of 

Banach space 𝑋, which guarantees that the solutions 

are well-defined and appropriately regular for 

analysis in these complicated systems. 

 

VII. CONCLUSION 
The Cauchy problem (1), which involves 

the Caputo fractional derivative 𝐷𝑡
𝛼 , a nonlinear 

operator 𝐴 on 𝑋, and a nonlinear function f, has a 

unique solution, 𝑢 ∈ 𝐶([0, T];  X), according to the 

reasoning presented above. Moreover, it is shown 

that the solution u is sufficiently regular, providing 

that it continues and proper differentiability with 

regard to t. 

The results of this research provide a strong 

basis for applications in numerous scientific and 

engineering domains by facilitating the analysis and 

solution of fractional differential equations in 

Banach spaces. We lay a strong foundation for 

theoretical study and real-world applications in 

science and engineering by proving the existence, 

uniqueness, and regularity of solutions.  

Fractional differential equations (FDEs), 

such as the one in equation (1), are being employed 

more and more to explain complicated processes 

that occur in a variety of domains and applications. 

More accurate and flexible portrayals of memory 

and heredity qualities of materials and processes are 

possible because to the fractional order α [1]. The 

ideas of Infinite-dimensional issues are possible in 

the Banach space setting, which is important for 

many physical models [13]. 

Equations like the one in (1) can be used in 

control theory to characterise systems having 

memory effects, which can result in novel control 

schemes and optimisation issues [14]. 

Numerous difficult facets of contemporary 

analysis and its applications are captured in this 

problem. Research on it advances theoretical 

mathematics as well as useful models in a number of 

scientific fields. 
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