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ABSTRACT: Phylogenetic tree reconstruction 

relies on accurate estimation of evolutionary 

distances between sequences. However, the 

observed Hamming distance between sequences 

can be misleading due to saturation, where multiple 

substitutions at the same site obscure the true 

evolutionary history. The Jukes-Cantor correction 

method addresses this by accounting for multiple 

substitutions, providing a more accurate 

representation of evolutionary distance. This study 

investigates the application of the Jukes-Cantor 

correction to the Hamming distance of genetic 

sequences in a case study, highlighting its impact 

on phylogenetic tree reconstruction. Our results 

demonstrate that the Jukes-Cantor correction 

significantly improves the accuracy of phylogenetic 

inference, particularly for sequences with substan 

tial evolutionary divergence. However, the model’s 

reliance on simplifying assumptions, such as equal 

substitution rates and lack of base composition 

bias, limits its applicability to sequences with 

moderate levels of divergence. This study stands as 

a bedrock for further research into more complex 

models that can account for model violations and 

provide more accurate estimations of evolutionary 

distances for highly divergent sequences.  

Keywords: Phylogenetic tree reconstruction, 

Jukes-Cantor correction, Hamming distance, 

saturation, evolutionary distance, model violations.  
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I. INTRODUCTION 
Phylogenetic tree reconstruction is a 

critical aspect of evolutionary biology, providing 

insights into the evolutionary relationships among 

different species or genetic sequences. Among the 

various methods available for constructing 

phylogenetic trees, distance-based methods are 

widely used due to their sim plicity and 

computational efficiency. The Jukes-Cantor (JC) 

correction is one such method, which ac counts for 

multiple substitutions at a single site, thereby 

providing a more accurate estimation of evo 

lutionary distances. This study aims to explore the 

application of the Jukes-Cantor correction in recon 

structing phylogenetic trees, highlighting its 

significance and effectiveness in evolutionary 

studies.  

Phylogenetic analysis has evolved 

significantly over the years, with various methods 

being developed to infer evolutionary relationships. 

One of the pioneering works in this field was the 

development of distance-based methods, which 

rely on the calculation of genetic distances between 

sequences [18]. These methods are favored for their 

computational efficiency and ease of 

implementation. The Jukes-Cantor model, 

introduced by Jukes and Cantor (1969) [14], is a 

fundamental approach in molecular evolution that 

assumes equal probability for all types of 

nucleotide substitutions. This model corrects for 

multiple hits at the same site, providing a more 

accurate distance estimate compared to simple p-

distance methods. The Jukes-Cantor correction has 

been widely adopted in phylogenetic studies due to 

its robustness and simplicity [17].  

Several studies have demonstrated the 

effectiveness of the Jukes-Cantor model in 

phylogenetic tree reconstruction. For instance, 

Tamura et al. (2004) [19] compared various 

distance correction methods and found that the 

Jukes-Cantor model consistently produced reliable 

phylogenetic trees, especially for closely related 

sequences. Similarly, Kumar et al. (2018) [16] 

highlighted the importance of using cor rected 

distance measures, including the Jukes-Cantor 

model, to avoid underestimation of evolutionary 

distances. Ane et al. (2007) [1] introduced 

Bayesian estimation techniques to assess 

concordance among gene trees, providing valuable 

insights into evolutionary relationships. Benson et 

al. (2008) [2] discussed the importance of Genbank 

in storing genetic information and its relevance to 

phylogenetic studies. Bor dewich et al. (2009) [3] 

explored the consistency of topological moves 
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based on the balanced minimum evolution 

principle, shedding light on the inference of 

phylogenetic relationships. DeBry (1992) [4] in 

vestigated the consistency of phylogeny-inference 

methods under varying evolutionary rates, offering 

a comprehensive analysis of the challenges in 

evolutionary studies. Dowling et al. (2003) [5] 

compared a priori and a posteriori methods in 

studying host-parasite associations, emphasizing 

the significance of different approaches in 

evolutionary research. Edgar (2004) [6] developed 

the Muscle algorithm for multiple sequence 

alignment, enhancing the accuracy of genetic 

analyses. The works of Felsenstein (1978) [7], Ge 

et al. (1999) [8], and Harris (2019) [9] provided 

essential insights into phylogenetic analysis, 

taxonomy, and evolutionary relationships. These 

studies, along with others such as Herberts et al. 

(2022) [11], Henning (1966) [10] and Huelsenbeck 

et al. (1997) [12], have contributed to the 

understanding of evolutionary processes and the 

reconstruction of phylogenetic trees.  

However, it is essential to acknowledge 

the limitations of the Jukes-Cantor model. While it 

provides a useful correction for multiple 

substitutions, it assumes equal base frequencies and 

substitution rates, which may not hold true for all 

datasets [21]. Advanced models such as the Kimura 

2-parameter and the General Time Reversible 

(GTR) model have been developed to address these 

limitations by incorporating variable substitution 

rates and base frequencies [15, 20].  

Despite these advancements, the 

simplicity and effectiveness of the Jukes-Cantor 

correction continue to make it a popular choice for 

phylogenetic analysis, particularly for preliminary 

studies and datasets with relatively uniform base 

compositions. This study aims to build on the 

existing literature by applying the Jukes-Cantor 

correction to reconstruct phylogenetic trees, 

evaluating its performance amongst other distance 

correction methods.  

 

II. MATHEMATICAL 

FORMULATION 
A phylogenetic tree is a graphical 

representation of the evolutionary relationships 

between a set of or ganisms or genes. It depicts the 

inferred evolutionary history of these entities, 

showing their common ancestors and the branching 

patterns that led to their diversification. A 

phylogenetic tree can be defined as a directed or 

undirected graph T = (V,E) where: V is the set of 

vertices, representing the taxa (or-ganisms or 

genes) being studied, and E is the set of edges, 

representing the evolutionary relationships between 

the taxa. A rooted tree has a designated root vertex 

representing the most recent common ances tor of 

all taxa in the tree. Edges are directed away from 

the root, indicating the direction of evolutionary 

descent. On the other hand, an unrooted tree does 

not have a designated root vertex. It only shows the 

relationships between taxa without specifying a 

common ancestor. Edges are undirected, 

representing evolutionary relationships without a 

defined direction of descent.  

Let us consider two phylogenetic trees 

denoted as T = (V,E) and T
0 
= (V

0
,E

0
). Given that T 

and T
0
 possess specific properties and that 

isomorphisms of directed trees maintain indegrees 

and outdegrees, and preserve degrees for 

undirected trees, a function ψ : T → T
0
can only be 

an isomorphism of the phylogenetic trees X and 

X
0
if ψ forms a bijection ψ : X → X

0 
on the sets of 

leaf nodes. Thus, it is necessary that |X| = |X
0
|. In 

the context of biology, an isomorphism of 

phylogenetic trees, represented by φ : T → T
0
, 

implies that the restriction φ : X → X
0 

of φ :V 

→V
0
acts as an identity map, indicating that X = 

X
0
and φ(v) = v for all v ∈ X. This concept of 

isomorphism elucidates how different 

representations of phylogenetic trees can convey 

the same evolutionary relationships among the leaf 

nodes.  

Consider the unrooted binary phylogenetic 

tree T1 = ((A,B),(C,D)) for X = {A,B,C,D}. In this 

tree, the common ancestor of the pairs {A,B} and 

{C,D} is denoted as v, while the ancestor of the 

remaining pairs is denoted as u. Another unrooted 

binary phylogenetic tree T2 = ((A,C),(B,D))is 

defined, featuring the ancestor s for the pair {A,C} 

and the ancestor t for the pair {B,D}. An 

isomorphism between T1 and T2 as phylogenetic 

trees can be established through the mapping φ : T1 

→ T2 with assignments such as φ(A) = C, φ(B) = 

D, φ(u) = s, φ(v) = t, φ(C) = A, and φ(D) = B. 

Notably, the focus here lies on the structural 

relationships, disregarding edge lengths.  

While phylogenetic trees inherently 

possess labeled leaf nodes, the addition of labels to 

the edges can enhance phylogenetic tree 

reconstruction. Interpreting the vertices V of a 

phylogenetic tree T = (V,E) as species, edge labels 

can convey information about evolutionary changes 

between species. In graph theory, labeling the 

edges E of T is termed as edge-weighting, defined 

by a function ω : E → R assigning a real value to 

each edge e ∈ E. Edge-weightings are commonly 

nonnegative, but flexibility in allowing broader 

edge-weightings can benefit phylogenetic tree 

reconstruction algorithms. The concept of edge-
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weighting in phylogenetics aligns with an 

evolutionary distance map, crucial for determining 

evolutionary distances through models explaining 

sequence changes. The study of evolutionary 

distances is a fundamental aspect of biological and 

biomathematical research, with extensive literature 

available for further exploration.  

In the course of our analysis, we will 

generate trees T ∈ Tn and associated weightings ω 

using distance-based reconstruction methods. The 

collection of ordered pairs comprising unrooted 

binary phy logenetic X-trees T and positive edge 

weightings ω is denoted as Tn = {(T,ω)|T = (V,E) ∈ 

Tn,ω : E → R
+
}. Extending Tn to encompass edge 

weightings with zero or negative values from 

certain reconstruc tion techniques could offer 

further insights and advancements in phylogenetic 

tree analysis.  

Phylogenetic trees often incorporate 

branch lengths, which represent the amount of 

evolutionary change that has occurred along each 

branch. These lengths can be measured in various 

units, such as: Genetic distance, which is the 

number of nucleotide substitutions or amino acid 

changes between two taxa. This is denoted by T(u, 

v), the path (sequence of edges) connecting vertices 

u and v in the tree. The distance (branch length) 

between vertices u and v denoted by d(u, v) , is 

measured along the path T(u, v). 

 

2.1 Distance Methods  

Distance methodologies utilize a 

collection of pairwise distances between sequences 

in a specified re duced multiple alignment to 

reconstruct trees, which can be either rooted or 

unrooted depending on the methodology employed. 

It is assumed that these distances are provided 

without detailing their specific derivation process. 

However, we will later delve into a common 

approach for generating distances, or more 

precisely, alternative values for distances that we 

term as ”pseudodistances.” Initially, we present a 

formal definition. Consider M as a set, and let d : 

M × M → R be a function. We define d as a 

distance function on M if it satisfies the following 

conditions:  

1. d(u, v) > 0 for all u, v ∈ M, where u 6= v,  

2. d(u,u) = 0 for all u ∈ M,  

3. d(u, v) = d(v,u) for all u, v ∈ M,  

4. The triangle inequality is upheld: d(u, v) ≤ 

d(u,w) +d(w, v) for all u, v,w ∈ M.  

 

A metric space is defined as a set 

equipped with a distance function adhering to the 

specified conditions and phylogenetic trees are 

likely to .  

The value d(u, v) representing any pair of 

u, v ∈ M is denoted as the distance between u and v 

when d operates as a distance function on M. By 

introducing a distance function on M, we have the 

ability to transform any set M into a metric space. 

This transformation involves defining d(u, v) = 1 

for all u, v ∈ M where u 6= v, and setting d(u,u) = 0 

for all u ∈ M. However, this particular distance 

function offers limited informational value. Our 

focus will be on the specific scenario of distance 

functions applied to a finite assortment M = {x1,..., 

xN} of genetic sequences intended for phylogenetic 

tree construction. Let us suppose that a distance 

function d is established on M, with d 

encapsulating insights into the extent of divergence 

among the sequences within M. This implies that d 

holds biological significance. For example, if 

sequences xi and xj have diverged further from their 

common ancestor compared to xk and xl, then d(xi, 

xj) > d(xk, xl). For ease of notation, we will denote 

d(xi, xj) as di j. Utilizing the symmetric distance 

matrix Md = (di j) will be beneficial in representing 

the information encoded by d.  

The distance dT (xi, xj) = dTi j in tree T 

represents the length of the shortest path from xito 

xj. By establishing an unrooted tree T connecting 

the genetic sequences, a tree-induced distance 

function dT is generated on M. It is shown that, 

under broad assumptions, dT qualifies as a distance 

function on M. The primary objective of distance 

methodologies in phylogenetic analysis is to 

identify all trees T where the distance function dT 

closely approximates d. Such trees are deemed 

optimal in the realm of distance methodologies. 

Consequently, the essence of distance 

methodologies lies in determining branch lengths 

and unrooted trees collectively (while also 

addressing a technique that constructs rooted trees).  

It logically ensues that if a tree T exists 

that produces the distance function d, then dT = d 

(dTi j = di j for all i, j), establishing d as an additive 

distance function on M. For the case of N = 2, the 

response to this inquiry is unequivocally 

affirmative. Let us now consider the scenario where 

N = 3. In this case, the three sought-after positive 

values u, v,w are such that  
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                                           (1) 

 

The solution to equations (1) is  

                 (2) 

 

We notice that due to the triangle 

inequality, the quantities on the right side of 

equation (2) are non negative. While they do not 

necessarily have to be positive, as the inequality is 

not strict, some of them could indeed be equal to 0. 

For this reason, we opt to allow for the presence of 

zero branch lengths, assuming all branch lengths to 

be non-negative values moving forward, rather than 

strictly positive. In biological contexts, branches 

with zero length are considered ”very short” 

branches. As the definition of additivity remains 

consistent with the previously provided definition, 

equation (2) illustrates that any distance function is 

additive on M in this broader sense when N = 3.  

 

 
Figure 1: Phylogenetic tree of 3 unknown genetic 

sequences 

 

At times, we set this requirement 

independently because the distance function dT may 

not meet condition (1) of the definition of a 

distance function if certain branch lengths in a tree 

T are zero. It is important to note that with the 

allowance of zero branch lengths, phylogenetic 

trees can exhibit any branching pattern at internal 

nodes, as opposed to solely following the 

bifurcating pattern discussed earlier. As observed, 

there exists only one tree that generates the 

specified distance function for N = 2,3. In the realm 

of additive distance functions, the uniqueness of 

such a tree is a commonly acknowledged fact.  

 

2.2 Jukes-Cantor correction to the Hamming 

distance  

The number of positions in which two 

sequences, denoted as x and y, exhibit differences 

is referred to as the Hamming distance, denoted as 

dH(x, y). Consider the scenario where we are 

presented with two sequences, x and y, composed 

of elements from the set {A,G,C,T}.  

 

x = G A T T C A T T C 

y = G C C A T A T T C. 

 

Hence the Hamming distance dH(x, y) between x 

and y is 4.  

The Jukes-Cantor correction dJC to the Hamming 

distance is defined as  

               (3) 

 

Assuming f denotes the frequency of 

unique sites that differentiate between two 

sequences, consider the above scenario where we 

have sequences x and y each of length 9, with a 

Hamming distance of 4, denoted as dH(x, y) = 4. 

Consequently, we find f =
4
9 

= 0.4444. An elementary yet 

rudimentary ap 
proach to quantifying sequence 

dissimilarity is through the application of the 

Hamming distance. This method overlooks 

possibilities such as character modifications over 

time and potential reversals in spe cific instances. 

Additionally, it fails to consider established 

biological principles, like the non-uniform 

likelihood of a DNA character transitioning into 

another, influenced by the specific DNA bases and 

their arrangement in the sequence. The term 

”evolutionary models” pertains to particular 

additional as sumptions and techniques utilized to 

determine the evolutionary distances between two 

given leaves, represented by aligned sequences 

(DNA, RNA, proteins, etc.), denoted as x and y. 

These assumptions and techniques are employed to 

address various challenges. Notably, sx and sy are 

contingent on the selection of evolutionary models.  

On a collection M, suppose d acts as a 
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distance function, and let N ≥ 4. In this case, d is 

deemed additive if and only if the following 

condition is satisfied: for any set of four distinct 

numbers 1 ≤ i, j, k,l ≤ N, the two sums that are 

equal and greater than or equal to the third sum are 

di j +dkl, dik +djl, and dil + djk. Subsequently, a 

traceback procedure is employed to construct the 

tree. This method involves keeping track of which 

pair of genetic sequences from the preceding step 

resulted in a specific genetic sequence at the 

current step [13, 18]. Further elaboration on the 

algorithm will now be provided. Define, for each i 

= 1,...,N,  

                        (4) 

 

Further, for all i, j = 1,...,N, i < j, set  

 

                   (5) 

 

We can represent Di j in an upper-

triangular matrix D = (Di j) for convenience. Let’s 

select a pair where Di j is the minimum for 1 ≤ i, j ≤ 

N (not necessarily unique). The genetic sequences 

xi, xj will then be merged into a single group, 

replacing them with an genetic sequence xN+1 

comprising a single element. The new genetic 

sequence xN+1 is situated at specific distances from 

xi and xj, serving as an internal node in the 

forthcoming tree:  

 

                  (6) 

 

We shall proceed to establish the distances between 

xN+1 and any xm where m 6= i, j in the subsequent 

manner:  

        (7) 

 

We are now able to iterate the previously 

outlined procedure with the updated set of N − 1 

genetic sequences M
0 

= {xm, xN+1,m 6= i, j}. 

Following these iterations, a single unrooted tree 

topology emerges, continuing until only three 

genetic sequences remain, at which stage the 

associated branch lengths are computed utilizing 

formulas (2). Subsequently, a traceback operation 

is employed to construct the tree.  

 

III. RESULT 
In this section, we will be applying the 

methods discussed in the previous section to 

analyze case studies and obtain meaningful results. 

By so doing, it allows us to reconstruct the 

evolutionary relationships between the observed 

entities in a rather intriguing manner, minimizing 

the number of evolutionary events required. By 

applying this method, we aim to gain 

comprehensive insights into the underlying 

structure and patterns present in phylogenetic 

structures.  

 

Now lets consider six (6) DNA sequences the set X 

= {A,G,T,C}, as entailed below;  

x1 = A T C G A T C G A T C G A T 

x2 = A T C G A T C G A T C G A A 

x3 = A T C G A T C G A T C A A A 

x4 = A T C G A T C G A A C A A A 

x5 = T A C G T A C G T A C G T C 

x6 = C A T G T A C G T A C G T A 

 

Now we get the distance matrix by computing the 

hamming distance between these sequences, this 

gives;  

 
 

The Jukes-Cantor correction MdJC distance matrix 

can be gotten as a correction to the hamming 

distance matrix using the equation (3), to give;  
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To ensure that D adheres to the criteria of 

a legitimate distance function, it is crucial to 

validate the four-point condition before initiating 

the neighbor-joining algorithm. However, in this 

instance, we will proceed with the neighbor-joining 

algorithm without conducting this validation 

process. A tree T will be constructed, and the 

derived function DT will be compared against D. 

This comparison will demonstrate that DT = D, 

affirming that D effectively fulfills the four-point 

condition.  

 

 

 
 

In the matrix provided, the smallest value 

is D13 = −1.4038. We will now introduce a fresh 

sequence denoted as x7, which will take the 

position of the pair x1, x3. The placement of x7 will 

be at a distance  

 

 
 

from x1 and at the distance  

 

 
 

from x3, as shown in Fig. 2.  

 
Figure 2: 

 

 

We will now compute distances between x7 and 

each of x2, x4, x5, x6. We have  

 

 
 

which gives the following distance matrix for the 

genetic sequences x2, x4, x5, x6, x7:  

 
 

For this new distance matrix, we will repeat the 

process again and obtain  
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which gives the following matrix:  

 
 

We now introduce a new genetic 

sequence, x8, that will replace the pair x5, x6 (note 

that D56 is minimal in the above matrix). We place 

x8 at a distance 0.0943 from x5 and x6 at a distance 

0.1581 from x8, as shown in Figure 3.  

 

 
Figure 3: 

 

The distance matrix for the sequences, x2, x4, x7, x8 

is:  

 
 

On the next step of the algorithm, we obtain r2 = 

0.5522, r4 = 0.5971, r7 = 0.6198, r8 = 1.5292, and:  

 
 

At this point, we can group together either 

x2 and x7, or x4 and x8, since both D27 and D48 are 

minimal in the above matrix (the resulting tree will 

not depend on our choice).  

 
Figure 4: 

 

We group together x4 and x8, that is, we 

introduce a new sequence x9, place it at a distance 

0.0090 from x4 and at a distance 0.9411 from x8, as 

shown in Figure 4, and calculate distances from x9 

to x2 and x7, which gives the following distance 

matrix for the three sequences:  

 
 

Going on now to determine the minimal pair from 

the above, r2 = 0.0835, r7 = 0.1511 and r9 = 0.2262, 

so that  

 
 

Jukes-Cantor Correction ... 11 From the above the 

we could pick any as the minimal pair, suppose we 

pick D27  

          (8)  

 

We shall proceed to establish the distances between 

x10 and any x9, in subsequent manner:  
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           (9) 

 

Then we introduce a new sequence x10, such that  

 
 

It follows that the above distance function is 

generated by the tree shown in Figure 5.  

 
Figure 5: 

 

Next, merging the trees from Figs. 2 – 5, we obtain 

the tree T shown in Fig. 6. 

 
Figure 6: 

 

It is easy to verify that T generates d and 

therefore the distance function d indeed satisfies 

the four point condition. The application of the 

Jukes-Cantor correction method to the Hamming 

distance of genetic sequences in our case study has 

yielded valuable insights into the accuracy and 

limitations of this approach in phylogenetic tree 

reconstruction. The Jukes-Cantor correction 

effectively addresses the issue of saturation in 

genetic distances, which occurs as evolutionary 

time increases and the observed Hamming distance 

plateaus, failing to reflect the true evolutionary 

distance. By accounting for multiple substitutions 

at the same site, the correction provides a more 

accurate estimation of the true evolutionary 

distance, simplifying phylogenetic analysis and 

allowing us to compare sequences that have 

undergone different levels of evolutionary change. 

This leads to more reliable tree topologies and 

branch lengths, as demonstrated by our case study, 

where the Jukes-Cantor correction significantly 

improved the accuracy of phylogenetic tree 

reconstruction, particularly when dealing with 

sequences that have experienced substantial 

evolutionary divergence.  

However, the Jukes-Cantor model relies 

on several simplifying assumptions, including 

equal rates of substitution for all nucleotides and a 

lack of base composition bias. These assumptions 

may not always hold true in real-world scenarios, 

potentially leading to inaccuracies in distance 

estimation. Additionally, the Jukes-Cantor 

correction is most effective for sequences with 

relatively low levels of divergence. As the number 

of substitutions increases, the model’s accuracy can 

decline, and more complex models, such as the 

Kimura 2-parameter model, may be necessary for 

highly divergent sequences. Furthermore, the 

accuracy of the correction is sensitive to violations 

of the model’s assumptions. For example, if there 

is a significant base composition bias, the 

correction may underestimate the true evolutionary 

distance.  

Future research could investigate the 

performance of other phylogenetic models, such as 

the Kimura 2-parameter model or the general time-

reversible (GTR) model, in correcting for 

saturation and improv ing phylogenetic tree 

reconstruction. Developing methods to account for 

model violations, such as base composition bias, 

would further enhance the accuracy of phylogenetic 

analysis. Additionally, combining the Jukes-Cantor 

correction with other phylogenetic methods, such 

as Bayesian inference or maximum likelihood 

analysis, could lead to more robust and informative 

phylogenetic inferences. 
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IV. CONCLUSION 
The Jukes-Cantor correction method is a 

valuable tool for addressing saturation in genetic 

distances and improving the accuracy of 

phylogenetic tree reconstruction. While it relies on 

simplifying assumptions and may have limitations, 

it provides a robust and widely applicable method 

for analyzing moderate levels of sequence 

divergence. By understanding its strengths and 

limitations, researchers can utilize the Jukes-Cantor 

correction effectively to gain insights into 

evolutionary relationships and reconstruct 

phylogenetic trees with greater confidence.  
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