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ABSTRACT 

This research presents a comprehensive study on 

the development and application of Model 

Predictive Control (MPC) for advanced path 

tracking and stabilization in autonomous mobile 

robots, utilizing both linearized kinematic and 

dynamic models. The mobile robot is modeled 

using a bicycle model, capturing its essential 

motion dynamics. These models are linearized at 

specific operating points to simplify control design 

while preserving system behavior near those points. 

Linear MPC controllers are designed for both the 

linearized kinematic and dynamic models, ensuring 

robust performance in two key tasks: set point 

stabilization and tracking a sinusoidal trajectory. 

The MPC effectively adjusts control inputs—

velocity, steering angle, and yaw dynamics—to 

minimize tracking errors and achieve smooth 

stabilization. Results demonstrate that the proposed 

controllers successfully enable precise trajectory 

following and stabilization, providing a strong 

foundation for real-time navigation and control of 

autonomous mobile robots in dynamic 

environments. 

KEYWORDS: Model Predictive Control, 

Dynamic modelling, Kinematic modelling, and 

mobile robot. 

 

I. INTRODUCTION 

There has been a notable rise in the 

development of mobile robot due their growing 

relevance across various sectors due to their ability 

to automate repetitive tasks and enhance autonomy. 

[1][2][3][4][5][6] describes some of their areas of 

application in healthcare, agriculture, 

manufacturing, warehousing and transportation. As 

autonomous vehicles gain prominence, the need for 

advanced control system like Model Predictive 

Control (MPC) becomes essential enabling robots 

to make autonomous, real-time decisions while 

acclimatizing to the dynamic operating 

conditions[7].  

Controllers such as Proportional Integral 

Derivative (PID) controllers [8]and Linear 

Quadratic Regulator (LQR) controllers [9]which 

are effective yet cannot handle complex, 

multivariable system, constraints and predict future 

behaviour. This research paper delves into 

implementation of MPC on mobile robot for 

stabilization at set points, and precise trajectory 

tracking.  

 

II. RELATED WORKS 
Several researchers have worked on 

various kinds of mobile robot using MPC. [10][11] 

used MPC to solve path following problem of an 

omnidirectional mobile robot. [12] proposed using 

MPC for control of a P2AT mobile robot and 

compared it with other controllers.[13] developed a 

nonlinear predictive controller to control a 

unicycle-like mobile robot (PIONNER 3-DX) for 

trajectory tracking. [14] performed a comparative 

study of Proportional Integral (PI) controller and 

Model Predictive controller of a wheeled mobile 

robot. [15] also did a comparative study of PID 

controller and compared it with the generalized 
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predictive control (GPC) and Linear Quadratic 

model predictive control (LQMPC) algorithms. 

[16] designed a Non-linear Model Predictive 

Control (NMPC) for omnidirectional wheeled robot 

with a guaranteed stability to the non-linear 

kinematic model. 

 

III. SYSTEM MODEL 
The system modelling of a mobile robot, especially 

a differential drive mobile robot, can be divided 

into two parts namely kinematics and dynamics 

which are discussed in section 3.1 and 3.2.  

 

Mobile robot parameters 

The system parameters for the vehicle dynamics 

model are defined as follows: 

 m = 1500 kg: Mass of the vehicle 

 L = 2.5 m:Wheelbase length 

 Iz = 3000kg ⋅ m2: Moment of inertia about 

the z-axis 

 v0=10 m/s: Operating point for velocity 

 δ = 0.1 rad:Operating point for steering angle 

 Fx : Operating point for longitudinal force 

 

3.1 Kinematic modeling 

Kinematic models describe the position and 

orientation of mobile robot as it evolves over time, 

based on the wheel velocities. Bicycle kinematic 

model was used in developing the model as shown 

in Fig 1.0 

 

 
Figure 1.0: Bicycle model approximation of a mobile robot 

 

The bicycle model used assumes the robot 

has two wheels (front and rear), steers by changing 

the angle of the front wheel and rear wheel is 

assumed to follow the front wheel in a continuous 

path. 

 

Parameters definitions: 

-  x, y : the coordinates of the robot in the global 

frame 

- θ: orientation of the robot’s body frame 

relative to the global frame 

- v: Linear velocity of the robot  

- δ: steering angle of the front wheel relative to 

the robot’s longitudinal axis 

- L:distance between the front and rear wheels 

- x , y , θ : Time derivatives of position and 

orientation. 

The velocity components in the x and y directions 

are related to the robot’s orientation: 

x = v ∙ cos θ  1  

y = v ∙ sin θ  2  

 

The robot changes its heading by turning 

its front wheels, which results in a change in 
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orientation. The rate of change of the robot’s 

orientation θ  is a function of the steering angle the 

velocity v.  

The relationship between the steering angle and the 

robot’s turning rate is derived from geometry. The 

instantaneous turning radius R is: 

R =  
L

tan δ 
 3  

Where L is the distance between the front and rear 

axles (wheelbase). The turning rate θ  is given as  

𝜃 =  
𝑣

𝑅
=  

𝑣

𝐿
∙ 𝑡𝑎𝑛 𝛿  4  

Equation 1 to 4 describes the motion of the robot in 

terms of velocity, position and steering angle. 

 

3.1.1 State and Control variables 

State vector: 

𝑥 𝑡 − position in 𝑥 axis 

𝑦 𝑡 − position in 𝑦 axis 

𝜃 𝑡 − orientation (heading angle) 

𝑣 𝑡 − velocity 

Thus, the state vector 𝒙 𝑡  is: 

𝒙 𝑡 =  

𝑥 𝑡 

𝑦 𝑡 

𝜃 𝑡 
  5  

Control input: 

𝛿 𝑡 − steering angle 

𝑣 𝑡 −  velocity  

Thus, the control input 𝒖 𝑡  is: 

𝒖 𝑡 =  
𝛿 𝑡 

𝑣 𝑡 
  6  

The state space model for the kinematic model of 

the system is in the form: 

𝒙  𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  7  

From equations 1, 2 and 4, we then have; 

𝒙  𝑡 =   

𝑥 
𝑦 

𝜃 
 =  

𝑣 ∙ 𝑐𝑜𝑠 𝜃 

𝑣 ∙ 𝑠𝑖𝑛 𝜃 
𝑣

𝐿
∙ 𝑡𝑎𝑛 𝛿 

  8  

Hence the non-linear state-space model is: 

𝒙  𝑡 =  

𝑐𝑜𝑠 𝜃      0

𝑠𝑖𝑛 𝜃       0
1

𝐿
∙ 𝑡𝑎𝑛 𝛿 0

  𝒖 𝑡  9  

 

3.1.2 Linearization 

Given the full nonlinear state space model for the 

kinematics of the mobile robot in the form: 

𝒙 = 𝑓(𝑥, 𝑢)                                     (10) 

The jacobian of 𝑓 𝑥, 𝑢 with respect to the 

state vector 𝑥 gives the 𝐴 matrix and the jacobian 

of 𝑓 𝑥, 𝑢  with respect to the input vector 𝑢 is 

gives the 𝐵 matrix and is written as: 

𝐴 =  𝜕𝑓

𝜕𝑥
 
𝑥0 ,𝑣0 ,𝛿0

,   𝐵 =  𝜕𝑓

𝜕𝑥
 
𝑢0

     (11) 

With the following specified operating points𝑣 =
𝑣0 , 𝜃 = 0 𝑎𝑛𝑑 𝛿 = 0, we now have our linearized 

state space representation 

 

𝐴 =  
0 0 0

 0 0 𝑣0

0 0 0
 ,  

 

𝐵 =  

1 0
0 0

0
𝑣0

𝐿

  

The output matrix 𝐶 and feedthrough matrix 𝐷 are 

defined as: 

𝐶 =  
1 0 0
0 1 0
0 0 1

 , 𝐷 =  
0 0
0 0
0 0

  

 

3.2Dynamic modeling 
The dynamic modelling considers the 

forces and torques acting on the robot to describe 

its motion. Newton’s second law was used for both 

translational and rotational motion. 

The robot’s mass 𝑚 and the forces acting 

on it in x and y directions determine the robot’s 

translational acceleration. Newton’s second law is: 

𝐹 = 𝑚 ∙ 𝑎                                 12  

Where F is the net force, and a is the linear 

acceleration. 

The linear acceleration (x, y) in x and y directions 

can be written as: 

𝑥 =  
𝐹𝑥
𝑚

 13  

𝑦 =  
𝐹𝑦

𝑚
 14  

Where 𝐹𝑥  and 𝐹𝑦  are the components of the forces 

acting on the car in the x and y directions, 

respectively. 

𝐹𝑥 : Longitudinal force generated by the motor 

𝐹𝑦 : Lateral force generated by steering 

The forces are functions of velocity 𝑣, friction 𝑓, 

and steering angle 𝛿: 

𝐹𝑥 = 𝑚 ∙ 𝑎𝑥 = 𝑚 ∙ 𝑣  15  

𝐹𝑦 = 𝑚 ∙ 𝑎𝑦 = 𝑚 ∙  
𝑣2

𝑅
 =  𝑚 ∙

𝑣2 ∙ 𝑡𝑎𝑛 𝛿 

𝐿
 16  

Herem the lateral force is derived based 

on how robot moves along a circular path when 

turning. 

The rotational motion is governed by the 

moment of inertia 𝐼𝑧  and the torque 𝜏. Newton’s 

second law for rotational motion is: 

𝜏 =  𝐼𝑧 ∙ 𝜃  17  

Where: 
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𝜏 is the torque applied about the center of mass 

𝐼𝑧  is the moment of inertia about the z-axis 

𝜃  is the angular acceleration 

The torque 𝜏 comes from the forces acting on the 

front wheels during steering: 

𝜏 = 𝐿 ∙ 𝐹𝑦 = 𝐿 ∙  𝑚 ∙
𝑣2 ∙ 𝑡𝑎𝑛 𝛿 

𝐿
 18  

𝐼𝑧 ∙ 𝜃 = 𝑚 ∙ 𝑣2 ∙ 𝑡𝑎𝑛 𝛿  19  
Equations 15, 16 and 19 describes the forces and 

torques necessary to control the robot’s movement, 

taking into account its mass, velocity, and steering 

inputs. 

 

3.2.1 State and Control variables 

State vector: 

𝑣 𝑡 − velocity 

𝜃 𝑡 − Orientation angle (yaw angle) 

𝜃  𝑡 − Angular velocity (yaw rate) 

Hence the state vector is: 

𝒙 𝑡 =  

𝑣 𝑡 

𝜃 𝑡 

𝜃  𝑡 

  20  

 

 

Control inputs: 

𝐹𝑥 𝑡 − Longitudinal force, 

𝛿 𝑡 − Steering angle 

 

Thus, the control input vector is: 

𝒖 𝑡 =  
𝐹𝑥 𝑡 

𝛿 𝑡 
  21  

From equations 13, 14 and 17, we have; 

𝑣  𝑡 =  
𝐹𝑥 𝑡 

𝑚
 22  

𝜃  𝑡 =  𝜃  𝑡  23  

𝜃  𝑡 =  
𝑚 ∙ 𝑣2 ∙ 𝑡𝑎𝑛 𝛿 

𝐼𝑧 ∙ 𝐿
 24  

Finally, the full nonlinear state-space model is: 

𝒙  𝑡 =  

𝑣  𝑡 

𝜃  𝑡 

𝜃  𝑡 

 =

 
 
 
 
 

𝐹𝑥  𝑡 

𝑚

𝜃  𝑡 
𝑚∙𝑣2 𝑡 ∙𝑡𝑎𝑛  𝛿 𝑡  

𝐼𝑧 ∙𝐿  
 
 
 
 

   (25) 

 

3.2.2 Linearization 

Given the full nonlinear state space model for the 

dynamics in the form: 

𝒙 = 𝑓(𝑥, 𝑢) 
Where: 

𝑓 𝑥, 𝑢 =

 
 
 
 
 
 

𝐹𝑥 𝑡 

𝑚
𝜃  𝑡 

𝑚 ∙ 𝑣2 𝑡 ∙ 𝑡𝑎𝑛 𝛿 𝑡  

𝐼𝑧 ∙ 𝐿  
 
 
 
 
 

 

The Jacobian of 𝑓 𝑥, 𝑢 with respect to the state 

vector 𝑥gives the 𝐴matrix and the Jacobian of 

𝑓 𝑥, 𝑢  with respect to the input vector 𝑢 is gives 

the 𝐵matrix and is written as: 

𝐴 =
𝜕𝑓

𝜕𝑥
,   𝐵 =

𝜕𝑓

𝜕𝑢
 

To analyze the system around an operating point, 

the nonlinear system is linearized around the 

following steady-state conditions: 

𝑣 = 𝑣0 , 𝜃 = 0, 𝜃 = 0, 𝐹𝑥 = 0 𝑎𝑛𝑑 𝛿 = 0    
Substituting the operating points into the Jacobians, 

we obtain the linearized system matrices 𝐴 and 𝐵: 

𝐴 =  
0 0 0
0 0 1
0 0 0

 , 

𝐵 =

 
 
 
 
 

1

𝑚
0

0 0

0
𝑚𝑣2

𝐼𝑧𝐿 𝑐𝑜𝑠2 𝛿  
 
 
 
 

 

The output matrix 𝐶 and feedthrough matrix 𝐷 are 

defined as: 

𝐶 =  
1 0 0
0 1 0
0 0 1

 , 𝐷 =  
0 0
0 0
0 0

  

 

3.3Control objectives for a Car-like robot 

The two control objectives for the mobile 

robots are set point stabilization and trajectory 

tracking. These objectives are essential to check the 

behaviour of robots during various operations. 

 

3.3.1 Set point stabilization objective 

The goal of a set point stabilization is to 

bring a robot to a desired final state and maintain 

that state. This is required for tasks like parking. 

The control system should move the robot from its 

initial position  𝑥𝑜 , 𝑦𝑜 , 𝜃𝑜  to a desired position 

 𝑥𝑑 , 𝑦𝑑 , 𝜃𝑑 and stabilize and that point. The robot 

will stop at this desired point with a velocity 𝑣 = 0. 

 

Mathematical formulation: 

Given that: 
 𝑥𝑑 , 𝑦𝑑 , 𝜃𝑑  is desired final state of the robot 

 𝑥, 𝑦, 𝜃  is the current state of the robot 

𝑒𝑥  is the error between 𝑥𝑑  and 𝑥 

𝑒𝑦  is the error between 𝑦𝑑  and 𝑦 

𝑒𝜃  is the error between 𝜃𝑑  and 𝜃 

𝑒𝑥 =  𝑥𝑑 − 𝑥                       26  

𝑒𝑦 =  𝑦𝑑 − 𝑦                      27  

𝑒𝜃 = 𝜃𝑑 − 𝜃                      28  
 

The control objective is to design control inputs 

𝑣 𝑡 − linear velocity and 𝛿 𝑡 − steering angle 

such that: 
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𝑙𝑖𝑚
𝑡→∞

𝑒𝑥  𝑡 = 0, 𝑙𝑖𝑚
𝑡→∞

𝑒𝑦  𝑡 = 0, 𝑙𝑖𝑚
𝑡→∞

𝑒𝜃  𝑡 = 0  

and  

𝑣 𝑡 → 0 𝑎𝑠 𝑡 → ∞ 

 

3.3.2. Trajectory tracking objective 

The goal of trajectory tracking is for the 

robot to follow a predefined path over time 

 𝑥𝑟 𝑡 , 𝑦𝑟 𝑡 , 𝜃𝑟 𝑡  . This is critical in applications 

like autonomous driving, where the robot must 

move along a desired route. To achieve this, the 

control inputs 𝑣 𝑡  – linear velocity and 𝛿 𝑡 − 

steering angle should be adjusted to ensure the 

robot tracks the trajectory with minimal error. 

Mathematical formulation: 

Given that: 

 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟  is the reference trajectory 

𝑒𝑥 𝑡  is the error between 𝑥𝑟 𝑡  and 𝑥 𝑡  

𝑒𝑦 𝑡  is the error between 𝑦𝑟 𝑡  and 𝑦 𝑡  

𝑒𝜃  is the error between 𝜃𝑟 𝑡  and 𝜃 𝑡  
𝑒𝑥 =  𝑥𝑟 𝑡 − 𝑥 𝑡  29  

𝑒𝑦 =  𝑦𝑟 𝑡 − 𝑦 𝑡  30  

𝑒𝜃 = 𝜃𝑟 𝑡 − 𝜃 𝑡  31  
The control objective is to design control inputs 

𝑣 𝑡 − linear velocity and 𝛿 𝑡 − steering angle 

such that: 

𝑙𝑖𝑚
𝑡→∞

𝑒𝑥  𝑡 = 0, 𝑙𝑖𝑚
𝑡→∞

𝑒𝑦  𝑡 = 0, 𝑙𝑖𝑚
𝑡→∞

𝑒𝜃  𝑡 = 0  

This means that the robot’s position and orientation 

should closely follow the reference trajectory over 

time, minimizing tracking errors. 

 

IV. MODEL PREDICTIVE CONTROL 

DESIGN 
MPC is a model-based optimization for 

computing the control input using feedback control 

approach. This optimal control strategy uses the 

model along with current state (either measured or 

estimated) to predict the future state of the system 

for a control input sequence over a short a sampling 

time. Based on the prediction, the objective 

function is minimized with respect to future 

sequence of inputs, thus requiring the solution of a 

constrained optimization problem for each 

sampling instant [17]. The first control input 

applied to system determines the next state, and the 

algorithm is repeated at the next time step which 

results in a receding horizon scheme. Hence MPC 

is also known is as receding horizon control 

(RHC). Figure 2.0 showsthe MPC scheme works. 

 

 
Figure 2.0: Model Predictive control scheme[18][19]
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Figure 3.0: Control signals to mobile robot using MPC design 

 

Figure 3.0 depicts the control signals that 

a mobile wheeled robot receives and sends while 

utilizing an MPC design.  MPC can be classified 

based on nature of the system model (Linear or 

Nonlinear MPC),  implementation (Implicit or 

Explicit MPC) and approach (Iterative or 

Recursive)[20].   

 

4.1. Optimization problem formulation 

The obtained non-linear systems are 

linearized around a specific operating point for 

control design purposes, resulting in a discrete-time 

linear time-invariant (LTI) system. Hence, Linear 

MPC can be applied to the system. 

Consider the discrete-time linear time-invariant 

(LTI) system: 

𝒙𝑘+1 = 𝑨𝒙𝑘+1 + 𝑩𝒖𝑘                 (𝟑𝟐) 

Where: 

𝑘 ∈ 𝕋 =  0, 1, … , 𝑁𝑇 − 1 ⟶discrete time instant 

𝒙𝑘 ∈ 𝕏 ⊆ ℝ𝑛 ⟶State vector 

𝒖𝑘 ∈ 𝕌 ⊆ ℝ𝑚 ⟶Control input vector 

𝑨 ∈ ℝ𝑛×𝑛 ⟶System matrix 

𝑩 ∈ ℝ𝑛×𝑚 ⟶Input matrix 

𝕏 ⟶Constraints set for states 

𝕌 ⟶Constraints set for control input 

𝑁𝑇 ⟶Time horizon 

𝑇 ⟶Sampling time 

The sets 𝕏and 𝕌are represented by linear 

inequalities: 

𝕏 = {𝒙 ∈ ℝ𝑛 : 𝑭𝒙𝒙 ≤ 𝒈𝒙} 

𝕌 = {𝒖 ∈ ℝ𝑚 : 𝑭𝒖𝒖 ≤ 𝒈𝒖} 

The cost function is selected as a quadratic sum of 

states and control inputs: 

𝐽𝑘 = 𝒙𝑁𝑇
𝑇 𝑸𝑁𝑇

𝒙𝑁𝑇
+  𝒙𝑘

𝑇

𝑁𝑇−1

𝑘=0

𝑸𝒙𝑘 + 𝒖𝑘
𝑇𝑹𝒖𝑘  (𝟑𝟑) 

Where𝑸𝑁𝑇
∈ ℝ𝑛×𝑛 , 𝑸 ∈ ℝ𝑛×𝑛 , 𝑹 ∈ ℝ𝑛×𝑚are 

weighting matrices used for relatively weighting 

the sates and control inputs and should be selected 

such that 𝑸𝑁𝑇
≥ 0, 𝑸 > 0,𝑹 > 0. 

State and control input sequence is defined 

as𝑿 =  𝒙0, 𝒙1 , … , 𝒙𝑁𝑇
 , 𝑼 =  𝒖0, 𝒖1, … , 𝒖𝒙𝑁𝑇−1  

over a time horizon. 

Terminal running cost is given by 𝒙𝑁𝑇
𝑇 𝑸𝑁𝑇

𝒙𝑁𝑇
, 

State running cost is given by  𝒙𝑘
𝑇𝑸𝒙𝑘and Control 

input running cost is given by𝒖𝑘
𝑇𝑹𝒖𝑘 .  

where𝑸, 𝑹 and 𝑸𝑁𝑇
are weight matrices, and 𝑁 is 

the prediction horizon. 

 

More explicitly, it can be written as: 

Objective function: 

𝒊𝒏𝒇
𝑼𝒌

𝑱𝒌 

Subject to: 𝑼𝒌 ∈ 𝕌𝑁 ,   ⟶Control input 

constraint 

𝑿𝒌 ∈ 𝕏𝑁+1 ⟶Control output constraint 

𝒙𝑖+1|𝑘 = 𝑨𝒙𝑖|𝑘 + 𝑩𝒖𝒙𝑖|𝑘
⟶System dynamics(34) 
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𝑘 ∈ 𝕋, 𝑖 = 𝑘, . . . , 𝑘 + 𝑁 − 1 ⟶ Sequence of time 

instant Where:   
 𝑸𝑁𝑇

≥ 𝟎

𝑸 > 0
𝑹 > 0

   ⟶Condition 

 

Representing the Optimization problem as a 

quadratic programming problem, then we have: 

 

𝒙𝑘|𝑘

𝒙𝑘+1|𝑘

⋮
𝒙𝑘+𝑁|𝑘

 

=  

𝑰
𝑨
⋮

𝑨𝑁

 𝒙𝑘

+   

𝟎 𝟎 … 𝟎
𝑩 𝟎 … 𝟎
⋮ ⋮ ⋮

𝑨𝑁−1𝑩 𝑨𝑁−2𝑩 … 𝑩

  

𝒖𝑘|𝑘

𝒖𝑘+1|𝑘

⋮
𝒖𝑘+𝑁−1|𝑘

                     (35) 

Where

𝒙𝑘 =  

𝒙𝑘|𝑘

𝒙𝑘+1|𝑘

⋮
𝒙𝑘+𝑁|𝑘

  , 𝑼𝑘 =  

𝒖𝑘|𝑘

𝒖𝑘+1|𝑘

⋮
𝒖𝑘+𝑁−1|𝑘

    𝑨𝑿 =  

𝑰
𝑨
⋮

𝑨𝑁

 ,  

𝑩𝑼 =  

𝒖𝑘|𝑘

𝒖𝑘+1|𝑘

⋮
𝒖𝑘+𝑁−1|𝑘

                (36) 

 

Which defines the system dynamics in such a way 

that the predicted state𝑿𝑘 is a function of current 

state𝒙𝑘  and input sequence𝑼𝒌 

𝑿𝑘

=    𝑨𝑿𝒙𝑘

+ 𝑩𝑼𝑼𝒌                                                                            (𝟑𝟕) 

Also, the weighting 𝑸𝑿 and  𝑹𝑼 are: 

𝑸𝑿 =  

𝑸 𝟎 … 𝟎

⋮ … ⋮
𝟎 ⋮ 𝑸 𝟎
𝟎 … 𝟎 𝑸𝑁

 ,  

 𝑹𝑼 =

 

𝑹 𝟎 … 𝟎
𝟎 𝑹 … ⋮
⋮ ⋮ 𝟎
𝟎 𝟎 … 𝑹

                                                     (𝟑𝟖) 

Hence the objective function can be written in 

terms of  𝑿𝑘and𝑼𝒌as 

𝐽𝑘 = 𝑿𝑘
𝑇𝑸𝑁𝑇

𝑿𝑘 + 𝑼𝑘
𝑇  𝑹𝑼𝑼𝑘  

Defining the other terms; 

 𝑭𝑿 =  

 𝑭𝑿 𝟎 … 𝟎
𝟎  𝑭𝑿 … ⋮

⋮ ⋮ 𝟎
𝟎 𝟎 …  𝑭𝑿

 ,  𝒈𝑿 =  

𝒈𝒙

𝒈𝒙

⋮
𝒈𝒙

 ,   

 𝑭𝑼 =  

 𝑭𝑼 𝟎 … 𝟎
𝟎  𝑭𝑼 … ⋮

⋮ ⋮ 𝟎
𝟎 𝟎 …  𝑭𝑼

 ,     𝒈𝑼 =

 

𝒈𝒖

𝒈𝒖

⋮
𝒈𝒖

         (39) 

and the state and control constraints can be 

represented in terms of  𝐗k and𝐔kas 

𝐅𝐗𝐗k ≤ 𝐠𝐗 

𝐅𝐔𝐔k

≤ 𝐠𝐔                                                                                                                      (𝟒𝟎) 

Hence the decision variablescanbe written as; 

𝐳 =  
𝐗k

𝐔k
 ,  𝐇 =  

𝐐𝐗 𝟎
𝟎  𝐑𝐔

 ,  𝐅 =  
𝐅𝐗 𝟎
𝟎  𝐅𝐔

 ,  

𝐠 =  
𝐠𝐗

𝐠𝐔
 ,  𝐅eq =  𝐈 − 𝐁𝐔 ,  

𝐠eq = 𝐀𝐗𝐱k          (𝟒𝟏)                       

And the cost function can be rewritten as; 

𝐢𝐧𝐟
z

𝐳T𝐇𝐳 

Subject 𝐭𝐨: (43) 

𝐅𝐳 ≤ 𝐠 

𝐅eq 𝐳 = 𝐠eq  

 

V. RESULTS AND DISCUSSION 
The MPC model was implemented using 

MATLAB. Table 2.1 and Table 2.2 shows the 

parameters used for set point tracking and 

trajectory tracking for both kinematic and dynamic 

model of the mobile robot as it tries to achieve its 

goal. 
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Table 2.1: Parameters used for set point tracking for both kinematic and dynamic model 

S/N Parameters Values 

1. Prediction Horizon 10 seconds 

2. Control Horizon 3 seconds 

3. Sampling Time 0.1 seconds 

 

Table 2.2: Parameters used for sinusoidal trajectory for both kinematic and dynamic model 

S/N Parameters Values 

1. Prediction Horizon 30 seconds 

2. Control Horizon 4 seconds 

3. Sampling Time 0.1 seconds 

 

5.1 Result obtained for kinematic model 

Figure 4.0 shows how the MPC controls 

both the velocity and steering angle to achieve the 

stabilization. The velocity is reduced over time, 

gradually bringing the robot to rest at the set point. 

Meanwhile, the steering angle is adjusted 

dynamically to correct the robot’s heading and 

position, with these adjustments becoming smaller 

as the robot approaches the target. 

 

 
Figure 4.0: Input plot for set point stabilization task using kinematic model 

 

The robot successfully reaches the target 

position as shown in Figure 5.0. The X-axis 

position grows and stabilizes, indicating the robot 

moves toward the desired, Similarly, the Y-axis 
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position correction reflects some lateral adjustment 

due to the slight stabilization performed in the 

heading angle. 

 
Figure 5.0: Output plot for set point stabilization task using kinematic model 

 

The plot in Figure 6.0 shows the velocity 

and the steering angle as the control inputs. The 

velocity curve shows a highly oscillatory pattern 

which corresponds to the robot trying to adjust its 

speed to stay on track with the sinusoidal trajectory. 

The steering angle follows a much smother, 

sinusoidal-like pattern. This indicates that the robot 

is making steering corrections that mirror the 

sinusoidal reference trajectory. 

 

 
Figure 6.0: Input plot for sinusoidal trajectory for a mobile robot 

 

The sinusoidal trajectory presents a 

challenging scenario because of the constant 

changes in direction and speed required, and the 

robot's response (particularly in velocity) reflects 

the effort needed to adjust its motion accordingly. 

Figure 7.0 and Figure 8.0 show that the MPC 

controller effectively minimized the tracking error 

for both the X and Y axes. While there are small 
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tracking error at the peaks of the sinusoidal curve, 

the controller manages to keep the robot close to 

the desired trajectory. These minor errors could be 

attributed to limitations in the model’s kinematic 

constraints of the robot which may prevent it from 

perfectly matching the reference at all times. 

 

 
Figure 7.0: MPC tracking of sinusoidal trajectory for X-axis using kinematic model 

 
Figure 8.0: MPC tracking of sinusoidal trajectory for Y-axis using kinematic model 

 

The robot’s heading angle is key to 

aligning the robot movement with the sinusoidal 

trajectory. There are minor deviations in the in the 

heading angle tracking plot as sheen in Figure 9.0, 

however, the MPC is able to correct these 

appropriately. 
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Figure 9.0: MPC tracking of sinusoidal trajectory for heading angle 

 

5.2 Results obtained for Dynamic model 

The step input in the longitudinal force 

reflects the control effort needed to propel the robot 

toward the set point. As shown in Figure 10.0, after 

the initial ramp-up, the MPC holds the force 

constant, likely aiming to stabilize the robot’s 

motion as it approaches the target. 

 

 
Figure10.0: Input plot for set point stabilization task using dynamic model 

 

Moreover, the steering angle shows some 

oscillation at the very beginning before quickly 

dropping to 0 degrees. The initial large steering 

angle indicates a sharp course correction required 

to align the robot toward the set point. As the robot 

stabilizes and moves straight toward the target, the 

steering angle approaches zero, meaning the robot 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 6, Issue 09 Sep. 2024,  pp: 723-737  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0609723737         |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal      Page 734 

no longer needs to turn as it is already aligned with the desired heading. 

 
Figure 11.0: Output plot for set point stabilization task using dynamic model 

 

The lateral dynamics are essentially zero 

throughout the process since the robot did not have 

a sideway drift confirming the control inputs 

effectively guided the robot along the desired path. 

Figure 11.0 shows the longitudinal dynamics plot 

indicates the robot’s forward movement, quickly 

accelerating to reach the desired position. Once the 

robot achieves the target speed, the system holds 

the longitudinal dynamics steady, suggesting that 

the robot has reached a constant velocity and is 

maintaining it as it approaches the set point. The 

initial large yaw shows that there is a need for 

correction in the robot’s heading to align it toward 

the set point. Once the heading has been corrected, 

the yaw angle stabilizes which means that the robot 

no longer rotate as it approaches its set point. 
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Figure 12.0: Input plot for sinusoidal trajectory for a mobile robot using the dynamic model 

 

The oscillatory velocity input reflects the 

robot’s need to continuously adjust its speed to 

follow the sinusoidal path. This is a typical 

response to a sinusoidal trajectory, as the robot 

needs to accelerate and decelerate to match the 

changing curvature of the path. The smoother 

changes in the heading angle indicate that the robot 

is making less frequent but still continuous steering 

adjustments to align with the trajectory. 

 

 
Figure 13.0: MPC tracking of sinusoidal trajectory for lateral dynamics 

 

Figure 13.0 indicates that the control 

system performed well to keep the robot aligned 

with the path in such a way that lateral corrections 

are not needed due to the continuous heading 

adjustment. 
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Figure 14.0: MPC tracking of sinusoidal trajectory for longitudinal dynamics 

 

Although there are some minor phase lag 

which could be due to robot’s physical constraints 

of the mobile robot model. Figure 14.0 still shows 

that the longitudinal dynamics of the robot closely 

follows the sinusoidal trajectory in the forward-

backward direction. 

 

 
Figure 15.0: MPC tracking of sinusoidal trajectory for lateral dynamics 

 

The yaw dynamics cloely match the 

sinusoidal reference showing that the robot 

successfully adjusted the orientation to follow the 

sinusoidal path. This is crucial for ensuring that the 

robot stays on track and doesn’t deviate from the 

desired heading. 
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