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ABSTRACT: Accurate inflation forecasting is 

vital for effective economic planning, monetary 

policy formulation, and investment decision-

making, especially in developing economies like 

Nigeria. Traditional models such as ARIMA and 

standard Geometric Brownian Motion (GBM) often 

assume constant parameters and may fail to capture 

the dynamic and volatile nature of inflation. This 

study introduces a novel Dynamic Geometric 

Brownian Motion (DGBM) model that incorporates 

rolling window estimates of drift and volatility to 

account for structural changes and macroeconomic 

shocks over time. Monthly inflation rate data from 

January 2003 to December 2024, obtained from the 

Central Bank of Nigeria, was used to compare the 

forecasting performance of three models: ARIMA, 

Traditional GBM, and the proposed Dynamic 

GBM. Model accuracy was evaluated using metrics 

such as Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and R-squared (R²). Diagnostic 

tests including the Augmented Dickey-Fuller, 

Shapiro-Wilk, and Ljung-Box were conducted to 

validate model assumptions. The results revealed 

that while the traditional GBM model performed 

poorly due to its rigid assumptions, the Dynamic 

GBM significantly outperformed both ARIMA and 

standard GBM models in terms of forecast 

accuracy and adaptability. The DGBM model 

achieved an R² of 0.966, demonstrating its strong 

predictive power. The study recommends the 

integration of the Dynamic GBM model into 

macroeconomic forecasting tools for more 

responsive and reliable inflation prediction. 

Keywords: Inflation, Forecasting, Geometric 

Brownian Motion, ARIMA, Rolling window. 

 

I. INTRODUCTION 
Inflation is the rate at which the general 

price level of goods and services rises over a 

specific period, thereby leading to decrease in the 

purchasing power of money. This reduction in 

purchasing power is often cited as the most 

significant adverse effect of inflation. It is 

commonly measured by changes in the Consumer 

Price Index (CPI), which reflects the cost of living.  

On the positive side, inflation may boost 

investor returns by raising profit margins and can 

benefit lenders in some ways. It may also 

encourage or promote investment under certain 

economic conditions. On the contrary, inflation can 

reduce the real value of savings and cause hardship 

for individuals on fixed earnings. It also disrupts a 

country's balance of payments and poses significant 

challenges for economic planning and monetary 

stability (Kelukume& Salami, 2014; Nathaniel & 

Emmanuel, 2018). 

One of the most pressing macroeconomic 

challenges for policymakers and central banks is 

the effective monitoring and accurate forecasting of 

inflation. 

Given the importance of inflation 

forecasting in shaping monetary policy and 

investment strategies, robust modeling techniques 

are essential. This is particularly relevant in the 

Nigerian scenero. Traditional econometric models 

often fall short in capturing the stochastic behavior 

of inflation, particularly in unstable economic 

environments. While the Geometric Brownian 

Motion (GBM) model has found extensive 

application in modeling asset prices and exchange 

rates, its use in inflation modeling has been limited. 

The standard GBM assumes constant drift 

and volatility—assumptions that may not hold in 

the face of dynamic macroeconomic conditions. To 

overcome this limitation, this study introduces a 

modified approach: the Dynamic GBM Model. 

This model recalibrates drift and volatility using a 

rolling window technique to better capture 

evolving inflationary trends. By comparing the 

ARIMA, Traditional GBM and Dynamic GBM 
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models, the study aims to identify the more 

effective approach for modeling and understanding 

inflation dynamics in Nigeria. 

II. LITERATURE REVIEW 
2.1 Theoretical Review 

2.1.1 Stochastic Process Theory 

Stochastic processes describe how variables evolve 

randomly over time. GBM is based on the 

following stochastic process principles: 

 Brownian Motion: Introduced by Louis 

Bachelier (1900) and popularized by Einstein 

(1905), Brownian motion describes random 

fluctuations in variables. 

 Ito’s Lemma: Governs the stochastic 

differential equations that define GBM 

 Markov Property: States that future values 

depend only on the present state, not past 

history. 

These principles form the foundation of GBM 

modeling in economic applications. 

 

2.1.2 Macroeconomic Inflation Theories 

Several economic theories explain inflation 

dynamics: 

1. Social Theory 

Social theories of inflation emphasize the 

broader societal and economic interactions that 

influence inflationary trends. Two key theories 

under this framework are: 

 

A. Expectations-Augmented Phillips Curve 

Theory 

The Expectations-Augmented Phillips 

Curve, introduced by Milton Friedman and 

Edmund Phelps (1968), extends the traditional 

Phillips Curve by incorporating inflation 

expectations. It suggests that inflation is influenced 

not only by unemployment and economic slack but 

also by the expectations of consumers and 

businesses. 

Mathematically, the theory is expressed as: 

πt=πt
e+ β(Ut − Un) 

Where:  

 πt  is the actual inflation rate, 

 πt
e  is the expected inflation rate, 

 Ut  is the actual unemployment rate, 

 Un  is the natural rate of unemployment 

 β is a sensitivity parameter 

 

This theory aligns with Geometric 

Brownian Motion (GBM) because both models 

incorporate random shocks and adaptive 

expectations in explaining inflation behavior. The 

stochastic component of GBM (σItdWt) captures 

the unpredictable changes in inflation that result 

from shifts in expectations and economic shocks. 

 

B. Monetary Theory of Inflation 

The Monetarist Theory, popularized by 

Milton Friedman in the 1970s, states that inflation 

is fundamentally a monetary phenomenon, 

meaning that it occurs when the growth rate of 

money supply outpaces economic output. This 

relationship is captured by the equation: 

MV = PQ 

Where: 

 M is the money supply, 

 V is the velocity of money, 

 P is the price level 

 Q is the real output 

Under this framework, if M grows faster 

than Q, inflation (P) will increase. The GBM model 

indirectly accommodates this theory by modeling 

inflation as a multiplicative stochastic process, 

where both money supply growth and external 

shocks influence price dynamics. 

 

2. Behavioral Theory 

Behavioral theories explain inflation by 

examining how individuals and firms form 

expectations and respond to economic conditions. 

These theories are relevant to GBM because they 

provide insight into how inflation volatility and 

randomness emerge from human decision-making. 

 

A. Adaptive Expectations Theory 

The Adaptive Expectations Hypothesis, 

proposed by Cagan (1956), suggests that people 

form inflation expectations based on past inflation 

rates. This means that if inflation was high in the 

past, individuals expect it to remain high in the 

future. The expectation is updated as new 

information becomes available, following the 

equation: 

πt
e= πt−1+ λ(πt−1 − πt−2) 

where: 

 𝜋𝑡
𝑒 is the expected inflation rate, 

 𝜋𝑡−1is the past observed inflation rate, 

 𝜆is the adjustment coefficient. 

 

GBM aligns with this theory as it assumes 

that inflation follows a continuous path with 

adjustments based on past trends. The drift term (μ) 

in GBM can be interpreted as the long-term 

expected inflation rate, while the stochastic 

component (𝜍ItdWt) accounts for unexpected 

deviations. 

 

B. Rational Expectations Theory 
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The Rational Expectations Hypothesis, 

developed by John Muth (1961) and expanded by 

Robert Lucas (1972), argues that individuals use all 

available information, including current policies 

and future projections, to form their expectations of 

inflation. Unlike adaptive expectations, which rely 

on past data, rational expectations assume that 

people anticipate inflation based on economic 

fundamentals. 

Mathematically, rational expectations can be 

represented as: 

E[𝜋𝑡 |𝐼𝑡 ]= 𝜋𝑡  

Where:  

 𝐼𝑡 is the available information. 

 𝜋𝑡 is the actual inflation. 

 

Under this theory, inflation follows a 

stochastic process with informed expectations, 

which closely resembles the behavior modeled by 

GBM. The stochastic term in GBM accounts for 

uncertainty, while the drift term represents 

expected trends based on rational forecasting. 

Understanding these theories helps justify the 

stochastic modeling of inflation dynamics. 

 

2.2 Empirical Review 

2.2.1 Overview of Inflation Forecasting Models 

Numerous studies have explored a wide 

array of inflation forecasting techniques, including 

econometric, time series, and stochastic models. 

For instance, In the Nigerian context, Feridun and 

Adebiyi (2005) investigated the role of monetary 

aggregates in inflation forecasting using monthly 

data from January 1986 to April 1998. Applying 

ARIMA techniques and evaluating forecast 

accuracy with Mean Absolute Percentage Error 

(MAPE), they established that variables such as 

money supply and interest rates significantly 

enhance inflation predictions. 

Comparative model evaluations have also 

been conducted internationally. Stock and Watson 

(2007) compared ARIMA, Vector Autoregression 

(VAR), and Phillips Curve models, concluding that 

no single model universally outperforms others 

across different economies. 

Ang, Bekaert, and Wei (2007) found that 

inflation expectation models (e.g., surveys) often 

yield more accurate short-term forecasts than 

purely statistical approaches. 

Koop and Korobilis (2012) introduced 

Bayesian time-varying parameter models, showing 

that non-constant parameter models tend to 

outperform static models. 

Chukwuemeka, Emmanuel, and Michael 

(2013) applied Fourier series and periodogram 

analysis to model Nigeria’s monthly inflation data 

from January 2003 to December 2011. Their 

approach yielded accurate forecasts over a 13-

month horizon, which closely matched observed 

inflation figures. 

Wanjoya and Waitiitu (2016) analyzed 

monthly Consumer Price Index (CPI) data from the 

Central Bank of Rwanda, covering the period from 

February 1995 to December 2015 (251 

observations). They employed data from 1995:2 to 

2013:12 to fit a parsimonious ARIMA model and 

used 2014:1 to 2015:12 for validation. Their 

findings identified ARIMA(4,1,6) as the most 

suitable model for predicting future CPI values. 

Similarly, Nyoni (2018) modeled and 

forecasted Zimbabwe’s inflation using monthly 

data from July 2009 to July 2018. Comparing 

Autoregressive (AR) and Generalized 

Autoregressive Conditional Heteroskedasticity 

(GARCH) models, the study concluded that 

GARCH models offer superior predictive power 

for inflation forecasting. 

Awa and Terna (2018) adopted ARIMA 

models to predict Nigeria’s 12-month average 

inflation using data from January 2006 to 

December 2017. The ARIMA(1,2,1) model passed 

all diagnostic checks and demonstrated strong 

forecasting performance for the year 2017. 

 

2.2.2 Applications of Geometric Brownian 

Motion (GBM) in Finance and Economics 

GBM has been extensively applied in 

finance and macroeconomics due to its strength in 

modeling stochastic processes and uncertainty. It is 

particularly useful in asset pricing, currency 

exchange forecasting, and stock market dynamics. 

The foundational work by Black and 

Scholes (1973) introduced GBM in option pricing 

models. Merton (1976) extended its application to 

corporate finance and economic growth. 

Jorion (1996) applied GBM to exchange 

rate modeling, evaluating both its strengths and 

limitations. Since inflation shares characteristics 

with financial assets—such as trend-driven growth 

and volatility—GBM presents a theoretically sound 

framework for inflation modeling. 

Marathe and Ryan (2005) investigated 

whether specific time series followed GBM 

behavior and addressed the importance of 

eliminating seasonality—since GBM does not 

inherently model cyclical variations. Their analysis 

revealed that while some industries conformed to 

GBM assumptions, others did not. 

Irma, Kristin Nova, and Primadina (2008) 

applied GBM to forecast Indonesian stock prices 
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during the COVID-19 outbreak. They analyzed 

returns, tested for normality, and calculated 

forecast errors. Their results indicated that the 

Mean Absolute Percentage Error (MAPE) mostly 

hovered around 10%, suggesting strong predictive 

performance. 

Abidin and Jaffar (2014) focused on 

forecasting future stock prices for small-sized 

companies listed on Bursa Malaysia using GBM. 

Their study emphasized the importance of data 

input horizon and found GBM effective across 

different time frames. 

Isaac (2017) evaluated GBM's 

applicability in forecasting stock prices on the 

Ghana Stock Exchange, using weekly closing 

prices of 10 top-performing companies between 

January 2008 and July 2015. Statistical tests 

supported GBM's reliability in capturing stock 

price behavior. 

In Nigeria, Imoni and Muhammad (2020) 

applied the GBM model to forecast stock prices on 

the Nigerian Stock Exchange using daily data from 

companies such as Nestle Foods and Dangote 

Cement. Their findings confirmed that GBM 

accurately captured short-term price movements. 

TopcuGuloksuz (2021) extended the 

random walk theory to GBM for modeling 

Walmart’s stock prices from March 2019 to March 

2020. The model yielded accurate predictions, 

affirming its practicality. 

Peng and Simon (2024) compared GBM 

predictions with historical Dow Jones Industrial 

Average (DJIA) data. Using Python simulations for 

the periods 1900–2000 and 2000–2015, they 

assessed GBM’s predictive validity and 

emphasized the model’s stochastic and memoryless 

nature. They also discussed limitations such as 

sensitivity to volatility and external economic 

factors. 

These applications affirm GBM’s flexibility and 

robustness in modeling time series data with 

stochastic features. However, it’s potential in 

inflation forecasting remains unexplored—an 

opportunity this study aims to address. 

 

III. METHODOLOGY 
The analysis of inflation rate dynamics 

were performed using the ARIIMA, Traditional 

Geometric Brownian Motion and the newly 

developed dynamic Geometric Brownian Motion 

model. The study considers monthly inflation rate 

data obtained from CBN official website 

(statistics.cbn.gov.ng/data-browser) from January 

2003 to December 2022 for training and January 

2023 to December 2024 for testing. The analysis is 

conducted using python statistical package. 

 

3.1 Model Specifications 

1. SARIMA (SEASONAL 

AUTOREGRESSIVE INTEGRATED 

MOVING AVERAGE) 

The ARIMA (Autoregressive Integrated 

Moving Average) is a time series model that 

attributes patterns of a given time series based on 

its past values using linear regression. The model 

uses three different terms in one equation. The first 

specification is the ―p‖ or ―AR‖ term which is the 

number of lagged variables to be used as 

predictors. The ―q‖ or ―MA‖ term which is the 

number of lagged forecast errors that is to be 

included in the model. The ―d‖ term stands for the 

order of differencing that is required to make the 

time series stationary. ARIMA modelling assumes 

that there is correlation between a time series data 

and its own lagged data.  

A k
th

-order autoregressive process expresses a 

dependent variable as a function of past values of 

the dependent variable, this is expressed as: 

𝑌𝑡 = 𝑐 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ∅3𝑌𝑡−3 +…….. + 

∅𝑘𝑌𝑡−𝑘+𝜀𝑡  
where 

 𝑌𝑡  is the variable being forecasted at time t 

 𝑐 is a constant 

 𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3……. 𝑌𝑡−𝑘 is the response 

variable at time lag t-1, t-2, t-3 ……. t-k 

respectively 

 ∅1,∅2∅3 …… . . ∅𝑘are coefficients to be 

estimated. 

 𝜀𝑡  is the error term at time t 

A p
th

-order moving-average process expresses a 

dependent variable𝑌𝑡  as a function of the past 

values of the p error terms. This is expressed 

as: 

𝑌𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜃3𝜀𝑡−3 +…….. 

+ 𝜃𝑝𝜀𝑡−𝑘  

where: 

 𝑌𝑡  is the variable being forecasted at time t 

 𝜇 is the constant mean of the process 

 𝜃1,𝜃2𝜃3 …… . . 𝜃𝑘are coefficients to be 

estimated. 

 𝜀𝑡  is the error term at time t 

 𝜀𝑡−1, 𝜀𝑡−2, 𝜀𝑡−3……. 𝜀𝑡−𝑘are the errors in 

previous time periods that are incorporated in 

the response 𝑌𝑡  
The ARIMA model can be specified as  

𝑌𝑡 =
𝛽0 + 𝜙1𝑌𝑡−1 +  𝜙2𝑌𝑡−2 +
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𝜙3𝑌𝑡−3 +……..+𝜙𝑘𝑌𝑡−𝑘+𝜀𝑡+𝜃1𝜀𝑡−1 +
 𝜃2𝜀𝑡−2𝜃3𝜀𝑡−3 +…….. + 𝜃𝑝𝜀𝑡−𝑘  

A SARIMA model extends ARIMA to capture 

seasonal patterns in time series data. A SARIMA 

model is written as: SARIMA(p,d,q)(P,D,Q)s. The 

general SARIMA model equation is given as  

𝛷𝑃 𝐵
𝑆 𝜙𝑝 𝐵  1 − 𝐵 𝑑 1 − 𝐵𝑠 𝐷𝑦𝑡 =

𝛩𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝜀𝑡     (1) 

 

2. GEOMETRIC BROWNIAN MOTION 

(GBM) 

GBM is a continuous-time stochastic 

process where the logarithm of a randomly varying 

quantity follows a Brownian motion with drift. 

GBM is a stochastic process where the underlying 

quantity changes randomly over time, but its 

logarithmic transformation follows a Brownian 

motion with drift and volatility. A stochastic 

process It is said to follow a GBM if it satisfies the 

following stochastic differential equation (SDE):  

dIt= μItdt + 𝜍ItdWt 

Where:  

 It= inflation rate at time t 

 μ = drift term (long-term average growth 

rate of inflation) 

 𝜍 = volatility (degree of fluctuation or 

uncertainty in inflation) 

 dWt = standard Brownian motion 

(Random shocks affecting inflation) 

According to Azubuike S.A and C. Anayamoabi 

(2021). The solution to the GBM SDE is define by:  

St=St-1exp((μ−
 1

2
𝜍2)∆t + 𝜍𝑊𝑡)    

whereWt= ∆𝑡 . 𝑍𝑡and𝑍𝑡~𝑁(0,1) 

Therefore for the inflation rate modelling: 

It=It-1exp((μ−
 1

2
𝜍2) ∆t + 𝜍 ∆𝑡 . 𝑍𝑡)  (2) 

Where: 

It is the inflation rate at time t 

It-1 is the previous inflation rate before time t 

∆t is the time increment (e.g., 1 month) 

𝑍𝑡 is a random value from a standard normal 

random variable (Wiener process) 

The drift parameter (μ) is used to model 

deterministic trends while the volatility parameter 

(𝜍) models unpredictable events occurring during 

the motion. 

 

A. PARAMETER ESTIMATION 

i. Estimating Drift (𝝁) 

The drift term is estimated using the average of the 

log returns of inflation: 

𝜇 = 
1

𝑇
 𝑟𝑡

𝑇
𝑡=1     (3) 

wherert = ln(
𝐼𝑡+1

𝐼𝑡
) is the log return of inflation over 

time. 

 

ii. Estimating Volatility (𝝈) 

Volatility is calculated as the standard deviation of 

log returns:  

𝜍 =  
1

𝑇−1
 (𝑟𝑡 − 𝜇𝑇

𝑡=1 )2   (4) 

 

3. DYNAMIC GEOMETRIC BROWNIAN 

MOTION MODEL 

To improve traditional GBM, I introduced time-

varying parameters. I therefore define the 

stochastic differential equation of the dynamic 

Geometric Brownian motion as:  

dIt= μtItdt + 𝜍𝑡ItdWt 

The exact solution to the DGBM Stochastic 

differential equation is obtained as.  

𝐼𝑡+∆𝑡  =Itexp((𝜇𝑡 −
 1

2
𝜍𝑡

2)∆𝑡 + 𝜍𝑡 ∆𝑡 . 𝑍𝑡) (5) 

The solution follows trivially as that of the standard 

geometric Brownian motion. 

 

STEPS TO IMPLEMENT THE DYNAMIC 

GEOMETRIC BROWNIAN MOTION 

To apply the Dynamic Geometric Brownian 

Motion: 

1. Choose a rolling window size N 

2. Estimate Drift (𝜇𝑡) at each time step 

i. Compute log returns: rt = ln(
𝐼𝑡+1

𝐼𝑡
) 

ii. Compute rolling mean of returns over W 

periods: 𝜇𝑡 =
1

𝑊
 𝑟𝑖

𝑡
𝑖=𝑡−𝑊+1  

3. Estimate volatility (𝜍𝑡) at each time step 

i. Compute rolling standard deviation of log 

returns: 𝜍𝑡 = 
1

𝑊−1
 (𝑟𝑖 − 𝜇𝑡 )2𝑡

𝑖=𝑡−𝑊+1  

4. We then solve the dynamic GBM equation 

numerically using the updated 𝜇𝑡  and 𝜍𝑡  at 

each step 

 

DISTINCTION BETWEEN THE GBM AND 

THE DYNAMIC GBM METHOD. 

The traditional GBM simulation splits the 

dataset into two fixed sets-training set and test set. 

The training set is used to estimate GBM 

parameters (𝜇 𝑎𝑛𝑑 𝜍). The test set is used to 

compare model-generated paths with actual data. 

The GBM model is trained on historical data and 

then projected into the future for validation. 

The dynamic GBM model continuously 

updates the training data as new observations arrive 

instead of a fixed train-test split. A rolling window 

of a fixed size moves through the dataset, 

recalculating 𝜇 𝑎𝑛𝑑 𝜍 at each step. 
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3.2 MODEL VALIDATION 

We evaluated the performance of each of 

the model using the:Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE). Mean Absolute 

Percentage Error (MAPE), Coefficient of 

Determination (R
2
), Standard error of the residuals 

 

3.3 STATISTICAL TESTS 

3.3.1 Test for Stationarity 

To determine whether the log returns series is 

stationary (i.e has constant mean and variance over 

time) 

 

 

Test Used: Augmented Dickey-Fuller (ADF) 

Test 

The ADF test, corresponding to modelling a 

random walk pattern with drift around a stochastic 

trend is expressed as:  

𝑦𝑡 = 𝛼 +𝜌𝑦𝑡−1 + 𝛿𝑖
𝑝−1 
𝑖=1 Δ𝑦𝑡−𝑖+𝛽𝑡 +𝜀𝑡 

 (6) 

Null Hypothesis (H0): The time series has a unit 

root (non-stationary). 

Alternative Hypothesis (H1): The time series does 

not have a unit root (stationary). 

Decision Rule: If the ADF test statistic is less than 

the critical value and the p-value is below 0.05, 

reject H0. 

 

3.3.2 Test for Normality 

To assess whether the log returns are normally 

distributed. 

Tests Used: Shapiro-Wilk Test 

Null Hypothesis (H0): The log returns are 

normally distributed. 

Alternative Hypothesis (H1): The log returns are 

not normally distributed. 

 

Test statistic: 

W = 
( 𝒂𝒊𝒙𝒊

𝒏
𝒊=𝟏 )𝟐

 (𝒙𝒊−𝒙 )𝟐𝒏
𝒊=𝟏

    (7) 

Where: 

 W is the test statistic 

 n is the number of observations in the dataset 

 𝑥1 ,𝑥2, ……… , 𝑥𝑛  are the ordered sample data 

points (from smallest to largest) 

 𝑥  is the sample mean of the data 

 𝑎1 ,𝑎2, ……… , 𝑎𝑛are the constants derived from 

the expected values of order statistics for a 

normal distribution. These constants are based 

on sample size n and are tabulated for various 

sample sizes. 

Decision Rule: If p-value < 0.05, reject H0. 

 

3.3.3 Test for Autocorrelation (Independence 

Test) 

To check if past values of returns have predictive 

power over future values. 

Tests Used:Ljung-Box Test 

Null Hypothesis (H0): No autocorrelation at 

specified lags. 

Alternative Hypothesis (H1): Presence of 

autocorrelation. 

Decision Rule: If p-value < 0.05, there is 

significant autocorrelation. 

 

IV. RESULTS AND DISCUSSION 
4.0 SARIMA MODEL 

4.1.1 MODEL SELECTION 

The presence of trend in the inflation rate 

scatter plot shown in figure 4.1 admits the 

existence of non-stationarity. Also the ACF plot 

(figure 4.2) shows a slow, gradual decline in 

autocorrelation with increasing lags, with 

significant values extending beyond lag 10. This is 

a clear indicator of non-stationarity. The PACF plot 

also displays a significant spike at lag 1, followed 

by a gradual decline with few significant spikes. 

This again suggests non-stationarity. The result of 

the stationarity test shown in Table 4.1A confirms 

the same. 

The existence of non-stationarity is 

addressed by differencing approach. The result of 

the stationarity test after first differencing shown in 

Table 4.1B indicate that first differencing is 

appropriate for the ARIMA model. The ACF and 

PACF plot of the first difference of the data shown 

in figure 4.3 suggest an ARIMA (2, 1, 2) model.  

The ACF plot (figure 4.2) does not exhibit 

clear, repeating spikes at seasonal lags which 

would be indicative of a seasonal pattern. The 

autocorrelations show a smooth decline without 

distinct periodic peak, suggesting no strong 

seasonal component is immediately apparent. 

Similarly, the PACF plot does not show significant 

spikes at seasonal lags, further supporting the 

absence of a clear seasonal effect. The evidence of 

seasonality is weak based on these plots. 

Perhaps there could be a latent annual 

seasonal pattern not initially apparent in the ACF 

and PACF first differenced time series. We 

therefore introduced a seasonal difference (D=1) 

with a 12 month period (s=12) in order to 

accommodate this. This brought about a market 

improvement in fit. (see table 4.1D) 

In order to get the model with the best 

performance, three additional different others for 

the non-seasonal component of the 
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SARIMA(p,1,q)(0,1,0)12 model are applied to the 

data. The results of the AIC and BIC values for 

these four SARIMA models are presented in table 

4.1C. It is clear from this table that SARIMA 

(2,1,2)(0,1,0)12 with minimum values for both AIC 

and BIC model selection criteria has the best 

performance. Consequently it is adopted for the 

analysis of the data. Its mathematical representation 

is given by: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)(1 − 𝐵)(1 − 𝐵12 )𝑦𝑡 =

 1 + 𝜃1𝐵 + 𝜃2𝐵
2 𝜀𝑡    

 (8) 

where:  

 𝑦𝑡 : original time series 

 𝐵: backshift operator, 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘  

 ∅1∅2 are autoregressive coefficients, 

 𝜃1𝜃2 are moving average coefficients 

 𝜀𝑡  is a white noise error term 

The results are shown in table 4.1D 

 

4.1.2 MODEL DIAGNOSTIC CHECKS 

The residual plots are shown in figure 4.6. 

The histogram is used to provide a visual 

impression indicative of the presence of normality 

distribution in the residual plot while Shapiro-wilk 

test is used to ascertain the same. The test of the 

significance of autocorrelation coefficients is also 

performed. The results of these are presented in 

table 4.1G 

 

4.1.3 MODEL FORECAST 

The SARIMA(2,1,2)(0,1,0)12 model was 

first applied to the inflation data for January 2003 

to December 2022 as training set. The model 

parameters estimated were then used to forecast for 

January 2023 to December 2024. The plot of the 

forecasted values are shown in figure 4.5, while the 

forecasted inflation rate for the period January 

2023 to December 2024 are presented in table 4.1F. 

 

 
Figure 4.1: The trend of the original inflation rate series (January 2003 – December 2022) 

 
Figure 4.2: The ACF and PACF of the original inflation rate series 
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Figure 4.3: A plot showing the differenced inflation rate series 

 
Figure 4.4: The ACF and PACF of the differenced inflation rate series. 

 
Figure 4.5: The plot of the actual vs SARIMA forecasted inflation rate (January 2023 – December 2024) 
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Figure 4.6: Plot of the residuals of the SARIMA model

 

Table 4.1A: STATIONARITY TEST ON THE ORIGNAL INFLATION RATE 

Stationarity Test ADF Test 

ADF Statistic -1.5674 

p-value 0.4999 

 

Table 4.1B: STATIONARITY TEST AFTER FIRST DIFFERENCING 

Stationarity Test ADF Test 

ADF Statistic -8.2332 

p-value 0.0000 

 

TABLE 4.1C: AIC AND BIC VALUES FOR FOUR TENTATIVE SARIMA MODELS 

SARIMA MODEL AIC BIC 

(1,1,2)(0,1,0)12 1048.591 1062.291 

(2,1,0)(0,1,0)12 1046.912 1057.187 

(2,1,1)(0,1,0)12 1048.649 1062.349 

(2,1,2)(0,1,0)12 1040.049 1057.174 

 

TABLE 4.1D: RESULTS AND PARAMETER ESTIMATE OF THE SARIMA MODEL 

  

Log Likelihood -515.024 

AIC 1040.049 

BIC 1057.174 

HQIC 1046.959 

Prob(H) (two-sided):                   0.00 

Heteroskedasticity (H) 0.03 

Jarque-Bera (JB) 455.70 

Prob(JB) 0.00 

Skew -0.64 

Kurtosis 9.82 

MSE 6.4338 

RMSE 2.5365 

MAE 1.8620 

R squared 0.7201 
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TABLE 4.1E: TABLE OF COEFFICIENTS 

 Coef Std Z P-value 

Ar.l1 -0.3258 0.183 -1.783 0.075 

ar.l2 0.4640 0.153 3.042 0.002 

ma.L1 0.5931 0.208 2.858 0.004 

ma.l2 -0.3969 0.196 -2.021 0.043 

sIgma
2
 5.4310 0.332 16.353 0.000 

 

TABLE 4.1F:FORECAST OF THE INFLATION RATE OF THE SARIMA MODEL (JAN 2023 - DEC 

2024) 

Date Forecasted 

Inflation Rate 

Actual Inflation 

Rate 

Jan 2023 21.288942 21.82 

Feb 2023 21.451921 21.91 

March 2023 21.641627 22.04 

April 2023 22.580724 22.22 

May 2023 23.443927 22.41 

June 2023 24.360801 22.79 

July 2023 25.379609 24.08 

August 2023 26.278985 25.8 

Sept 2023 26.512837 26.72 

Oct 2023 26.847091 27.33 

Nov 2023 27.214953 28.2 

Dec 2023 27.095522 28.92 

Jan 2024 27.035387 29.9 

Feb 2024 27.206229 31.7 

March 2024 27.389161 33.2 

April 2024 28.334114 33.69 

May 2024 29.192265 33.95 

June 2024 30.113503 34.19 

July 2024 31.128545 33.4 

August 2024 32.031173 32.15 

Sept 2024 32.262218 32.7 

Oct 2024 32.598895 33.88 

Nov 2024 32.964665 34.6 

Dec 2024 32.847041 34.8 

 

Table 4.1G: TEST ON THE RESIDUALS OF THE SARIMA MODEL 

Type of Test Test Statistic p-value 

Shapiro-Wilk Test 0.8595 0.0000 

Ljung-Box Test 30.106773 0.000823 

 

4.1.4 DISCUSSION OF RESULTS 

The SARIMA model fitted to the inflation 

data from January 2003 to December 2022 reveals 

several notable insights. The model incorporates 

both non-seasonal and seasonal dynamics through 

autoregressive (AR) and moving average (MA) 

components, along with appropriate differencing to 

achieve stationarity. 

The application of non-seasonal (d=1) and 

seasonal (D=1, s=12) differencing has proven 

crucial, transforming the originally non-stationary 

series into a form suitable for modelling and for 

resolving the persistent flattened outputs observed 

in earlier ARIMA attempts. 

The results (table 4.1E) show that the non-

seasonal AR terms AR(1) is found to be marginally 

insignificant, with p-value of 0.075, suggesting a 

weak autoregressive effect at lag 1 indicating that 

immediate past values at lag 1 have no influence on 

the present. The AR(2) was found to be highly 

significant with p-value of 0.002 and the 
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coefficient is 0.4640, suggesting a high degree of 

persistence in inflation rate movements. 

The non-seasonal MA terms MA(1) and 

MA(2) were found to be statistically significant, as 

indicated by p-values less than 0.05. This suggests 

that past forecast errors contribute meaningfully to 

improving model performance in this case.  

The final equation of the SARIMA model 

is given as: (1 − 0.4640𝐵2)(1 − 𝐵)𝑦𝑡 = (1 +
0.5931𝐵 − 0.3969𝐵2)𝜀𝑡  

However, residual diagnostics raise 

important concerns. The Shapiro-Wilk test (table 

4.1G) yielded a p-value of 0.0000, indicating that 

the residuals are not normally distributed. This 

non-normality was further confirmed by the 

Jarque-Bera test (table 4.1D), suggesting heavy 

tails and potential outliers. The heteroskedasticity 

test yields a statistic of 0.03 with a p-value of 0.00 

which shows that the residuals do not have constant 

variance, violating another key assumption of the 

SARIMA framework. 

It is observed from fig 4.4 that some of the 

autocorrelations and partial autocorrelations are 

statistically significant. Also the Ljung-Box test 

(table 4.1G) indicate the presence of significant 

autocorrelations in the residuals. Consequently the 

correlograms of both the autocorrelation and the 

partial autocorrelation give the impression that the 

estimated residuals are not purely random, that is 

not stationary. 

In summary, while the 

SARIMA(2,1,2)(0,1,0)12 model captures important 

trend and seasonal features of inflation dynamics, 

the diagnostic tests reveal violations of the 

assumptions of normality, independence, 

homoscedasticity and stationarity in the residuals. 

These issues suggest that the model may benefit 

from adjustments such as exploring other models 

like dynamic models to better handle volatility. 

This is the primary objective of this study. 

 

4.2 GEOMETRIC BROWNIAN MOTION 

4.2.1 GBM MODEL 

The histogram and the scatter plot (fig 4.7) 

of the log returns of inflation rate was first plotted 

and tested for normality using the Q-Q plot to 

ascertain the fulfilment of the normality 

requirement for the application of a GBM model. 

The results shown in figure 4.7 clearly indicate that 

the normality assumption is tenable. The GBM 

model was then applied to the inflation data from 

January 2003 to December 2022 as a training set to 

estimate the parameters 𝜇 (drift) and 𝜍(volatility) 

of the GBM model using the model representation 

given by equation: 

It=It-1exp((μ−
 1

2
𝜍2) ∆t + 𝜍 ∆𝑡 . 𝑍𝑡)  (9) 

 The results are shown in table 4.2. This 

model is then used to obtain forecasted values of 

inflation rates for the next 24 months (January 

2023 to December 2024). The actual and forecasted 

values of the inflation rate for this period are shown 

in figure 4.8. 

 

4.2.2 DYNAMIC GBM MODEL. 

The dynamic GBM model fitted to the data as 

explained earlier is represented by 

𝐼𝑡+1 =Itexp((𝜇𝑡 −
 1

2
𝜍𝑡

2)∆𝑡 + 𝜍𝑡 ∆𝑡 . 𝑍𝑡) (10) 

Clearly this accommodates the Markov 

dependence of inflation rates. That is, future 

evolution of the variable It depends only on its 

present value and not on the past as stated in the 

assumption (5) of GBM model. 

Consequently the application of this model to data 

necessitates the implementation of a dynamic 

algorithm which is briefly described below. 

A 240 months rolling window are used. That is, 

every predicted value is computed based on a 240 

months inflation rate data. 

We start by using the data for first 240 

months (that is January 20023 to December 2022) 

as our first rolling window. This is used to estimate 

𝜇 and 𝜍 for time t=0, that is 𝜇 0 and 𝜍 0. Our I0 is the 

inflation rate for December 2022. Our predicted 

inflation rate for January 2023, I 1=I 0exp(μ 0 −
 1

2
σ 0

2
)∆t + σ 0 ∆t . Z0) 

The first (January 2003) observed value of inflation 

rate from the 240 month rolling window is 

removed to obtain the rolling window for the next 

estimation. μ 1andσ 1 are then estimated from this 

new rolling window and the estimated value for 

February 2023 I 2 is then computed using 

I 2=I 1exp(μ 1 −
 1

2
σ 1

2
)∆t + σ 1 ∆t . Z1) 

The process is repeated to generate 24 rolling 

predictions for each of the months from January 

2023 to December 2024. The results are shown in 

table 4.3A and figure 4.9 

 

 

 

 

 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 7, Issue 07 July 2025,  pp: 695-710  www.ijaem.net  ISSN: 2395-5252 

      

 

 

 

DOI: 10.35629/5252-0707695710         |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 706 

TABLE 4.2A: ESTIMATED PARAMETERS OF THE GBM 

Parameter Value 

Drift (μ) 0.002932 

Volatility (σ) 0.138315 

 

TABLE 4.2B: PERFORMANCE METRICS OF THE GBM 

Mean Squared Error (MSE) 66.705851 

Root Mean Squared Error (RMSE) 8.167365 

Mean Absolute Error (MAE) 6.836863 

Mean Absolute Percentage Error (MAPE) 21.73% 

Standard Error of Residuals (SER) 8.5305 

 

 
Figure 4.7: Plots showing the analysis on the log returns of the inflation rate 

 

 
Figure 4.8: GBM Forecasted vs actual inflation rate for January 2023 – December 2024. 
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4.3: THE DYNAMIC GBM APPROACH 

Table 4.3A: ESTIMATED PARAMETERS OF THE DYNAMIC GBM APPROACH 

Month Estimated 

Drift 

Estimated 

volatility 

Forecast

ed 

Inflation 

rate 

Actual 

Inflation 

rate 

1 0.002932 0.138315 21.34 21.82 

2 0.003012 0.138032 21.82 21.91 

3 0.003017 0.137746 21.91 22.04 

4 0.003029 0.137461 22.04 22.22 

5 0.003050 0.137178 22.22 22.41 

6 0.003072 0.136897 22.41 22.79 

7 0.003128 0.136620 22.79 24.08 

8 0.003339 0.136382 24.08 25.8 

9 0.003605 0.136170 25.80 26.72 

10 0.003732 0.135910 26.72 27.33 

11 0.003808 0.135642 27.33 28.2 

12 0.003918 0.135381 28.20 28.92 

13 0.004002 0.135118 28.92 29.9 

14 0.004119 0.134862 29.90 31.7 

15 0.004334 0.134639 31.70 33.2 

16 0.004499 0.134399 33.20 33.69 

17 0.004538 0.134137 33.69 33.95 

18 0.004551 0.133874 33.95 34.19 

19 0.004560 0.133614 34.19 33.4 

20 0.004452 0.133366 33.40 32.15 

21 0.004288 0.133134 32.15 32.7 

22 0.004336 0.132880 32.70 33.88 

23 0.004456 0.132640 33.88 34.6 

24 0.004519 0.132390 34.60 34.8 

 

Table 4.3B: MODEL PERFORMANCE OF THE DYNAMIC GBM 

Performance metrics Values 

Mean Absolute Error 0.7308 

Mean Squared Error 0.7849 

Root Mean Squared Error 0.8860 

Mean Absolute Percentage Error 2.51% 

R-squared 0.9659 

Standard error 0.9259 

 

 
Figure 4.9: Dynamic GBM forecasted vs Actual inflation rate for January 2023 – December 2024 
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4.2.3 DISCUSSION OF RESULTS 

The results (figure 4.8) for the forecasted 

values for the GBM model shows that the model is 

a poor fit to inflation rate data. This prompted a 

recourse to the application of another model that 

could bring about an improvement in fit. The GBM 

model was then modified for this purpose. The 

modification entails allowing not only inflation rate 

but also the drift and volatility parameters to be 

Markov dependent. The results presented in table 

4.3B and figure 4.9 shows that a marked 

improvement in fit is achieved with a high score of 

value for R
2 
=0.967.  

Because of the success achieved in the 

application of the modified GBM model to 

inflation data, an algorithm for implementation to 

any similar data for inflation forecasting is 

developed below. 

 

4.3 GENERALIZED ALGORITHM FOR THE 

DYNAMIC GEOMETRIC BROWNIAN 

MOTION 

Using a rolling window of size n; forecast 

the next period using a Geometric Brownian 

motion. At each time t, estimate drift and volatility 

using the most recent n values, forecast forward for 

next period using those parameters, and use that 

value as the forecasted value t+1. Then move to 

t+1, and repeat the process. 

 

Inputs: 

 S = [S1, S2, S3, ……………, ST]: historical 

observed data 

 n: rolling window size for parameter 

estimation 

 Δt =1: time increment (e.g 1 for monthly data) 

 Z~N 0,1 standard random normal shocks 

 

Algorithm: 

For each time point where t ≥ n and t < T: 

1. Form the rolling window of size n ending at 

time t: 

W =[St−n+1, St−n+2, ………………………, St] 

2. Compute log returns from the window:  

Ri= ln  
W i

W i−1
 , for i = t − n + 2,…………… .… . t 

3. Estimate drift and volatility parameters:  

μt =
1

n
 Ri

n−1

i=0

 

σt=  
1

n−1
 (Ri − μt)2n−1

i=0  

4. Forecast forward, using GBM formula: 

S t+1 = S texp⁡[ μt −
1

2
σt

2 ∆t + σt ∆t. Zt] 

5. Store S t+1 as the forecasted value for time 

t + 1 

6. Advance to next time point t= t + 1, and 

repeat steps 1-5 

Output:  

A sequence of forecasted values: 

 S n+1 ,   S n+2 ,………….  , S T   

Summary:  

 Drift and volatility are re-estimated at each 

time step using a fixed-length rolling window. 

 GBM is simulated only one step ahead and that 

forecast is recorded 

 The process shifts forward by one time point 

and repeats. 

 

V. CONCLUSION AND 

RECOMMENDATIONS 
5.1 Conclusion 

This research demonstrates that inflation 

modeling using Geometric Brownian Motion can 

be greatly enhanced through the introduction of 

dynamic and recursive forecasting structures. The 

Dynamic Recursive GBM Model, provides a 

powerful tool for forecasting inflation over 

multiple time horizons while adapting to evolving 

macroeconomic conditions. 

By incorporating rolling window 

parameter estimation and recursive updating of 

forecasted values, the model overcomes the 

limitations of fixed-parameter assumption in 

SARIMA and traditional GBM models and 

therefore captures the nonlinear and stochastic 

nature of inflation more effectively. The 

comparative evaluation with SARIMA and 

traditional GBM confirms that the dynamic model 

offers superior flexibility, statistical validity, and 

forecasting accuracy. 

 

5.2 Recommendations 

1. In developing countries like Nigeria, 

significant discrepancies often exist between 

policy formulation, implementation and actual 

outcomes. These gaps are frequently due to 

inconsistencies in policy execution and the 

difficulty monetary authorities face in 

monitoring and predicting future inflation 

trends with precision. This poses a pressing 

macroeconomic challenges for policy makers 

and the central bank. The performance metrics 

of the dynamic GBM model, particularly its 

high R
2
show that it is highly reliable for 

inflation rate forecasting. It is therefore 

recommended that the CBN and other 

macroeconomic agencies should consider 
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adopting it as more responsive and adaptive 

forecasting model. 

2. The dynamic GBM model should be 

embedded into real-time forecasting platforms 

where the estimation window and forecast path 

are updated monthly to provide timely and 

data-driven inflation outlooks. 
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