

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 7 July 2022, pp: 195-199 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0407195199 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 195

Performance Evaluation of Matrix

Products on Multicore Architectures

SharlonAlmida de Silva*, Claudio Scepke*, Natuan

Agrawal**
*
Student, Federal University of Pampa, Rio Grande do Sul, Brazil

**
Professor, Amaravathi Institute of Technology, Tamil Nadu, India

--

Submitted: 01-07-2022 Revised: 04-07-2022 Accepted: 08-07-2022

ABSTRACT: Scientific applications tend to deal

with large volumes of data, as is the case with

simulations of natural phenomena, which demand

high computational power. Alternatively, using

multi-core computers for processing contributes to

performance improvement. However, performing

specific optimizations for the target architecture

can further influence performance. Therefore, the

objective of this work is to evaluate the impact of

optimization techniques on application

performance as well as test the performance of

these techniques in multi-core and many-core

architectures. For that, a matrix multiplication

algorithm was chosen for the application of Loop

Interchange, and Loop Tiling techniques.

Furthermore, this algorithm was parallelized with

OpenMP and CUDA to explore the different

processing cores of the computational architectures

used. The results show that algorithms optimized

for a target architecture gain performance, and this

gain can reach 11 times in sequential optimizations

for cache memory and 100 times in parallel

execution with OpenMP on Intel Xeon E5-2650

processors. Furthermore, this performance gain can

be leveraged on the NVidia TITAN Xp GPU up to

1720 times.

KEYWORDS:Matrix Product, Algorithm

Optimization, Multi-core, many-core architectures.

I. INTRODUCTION
Computing has revolutionized scientific

research as it solves real science problems through

numerically intensive calculations. Commonly real

problems require a lot of input data because the

more information is computed, the more accurate

the results will be. But the more calculations are

performed, the slower the execution, which implies

the need for powerful machines to make it possible

to obtain accurate results quickly.

Parallel computing is necessary to enable

the simulation and understanding of phenomena

such as galaxy formation, molecular dynamics,

genetic sequencing, mathematical simulations, oil

prospecting, protein synthesis, weather forecasting,

and geophysical studies, among others (Navarro et

al 2014). Many applications are not feasible to be

solved through sequential computations in a single

processing core because of the time they take to

provide their results. In meteorology, for example,

application execution time is unfeasible in

sequential architectures, as the response would be

obtained after the phenomenon occurs (Schepke et

al 2013).

Professionals from different areas use computing to

support their scientific research. The agility in the

return of results during the execution of the

applications is one of the factors that make possible

the current scientific advance, requiring powerful

computational resources for this purpose. Thus, in

order to solve runtime problems and meet the

processing needs of applications, there are multi-

core and many-core parallel architectures. The

parallelism provided in these multi-core and many-

core machines makes it possible to run an

application faster, as several tasks can be computed

simultaneously on the various cores available in the

hardware.

High-Performance Computing (HPC) is

the area of study that makes it possible to reduce

the execution time of applications through the

execution and optimization of algorithms in multi-

core and many-core architectures, enabling the

resolution of problems each time. bigger in runtime

smaller and smaller. For this research, two types of

high-performance processors were used, the CPU

(Central Processing Units, or Central Processing

Unit) and the GPU (Graphics Processing Units, or

Graphics Processing Units), which enable high

computing capacity.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 7 July 2022, pp: 195-199 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0407195199 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 196

This work aimed to evaluate the

performance of a matrix multiplication algorithm in

multi-core and many-core architectures,

highlighting the best optimization techniques used

and comparing the execution time obtained

between the Sequential, OpenMP (Open Multi-

Processing) and CUDA (Compute Unified Device

Architecture).

The rest of this article is organized as

follows, Section 2 presents the methodology of this

work. In Section 3 the results obtained are

presented. Finally, Sections 4, 5, and 6 present the

final considerations, the acknowledgments, and the

references used, respectively.

II. METHODOLOGY
Matrices are fundamental operations of

Linear Algebra. They are used for the

representation of data in several areas of

knowledge. An efficient algorithm for matrix

calculus is important. When the order complexity

increases, the operation demands greater

performance capacity (Marquezan et al 2002). With

the technological advance of the last decades, the

algorithms need to be modified to better take

advantage of the current computational power.

Efficient implementation of the matrix

product is critical as it appears in many scientific

applications, as it mathematically models a linear

function. The matrix multiplication A(mxn) ×

B(mxn) is given from the dot product between the

row elements of matrix A and the column elements

of matrix B, generating the corresponding matrix

Cmxn. Every matrix has an mxn order to represent

the size of the rows and columns, respectively, and

its elements are represented by the letters i(rows)

and j(columns).

Although matrix multiplication is a simple

operation, the way in which the elements are

computed directly influences the performance of

the operation. Depending on the way the

programmer structures the algorithm, the execution

time varies. An efficient implementation of

calculus can reduce a run from many hours to

minutes, or even seconds.

The fetching of instructions and data by

the processor is related to the communication

between the CPU and the main memory. High main

memory access latency is one of the performance

limitations. The use of cache memory serves to

minimize the impact of this latency, since it stores

data frequently used by the processor based on the

principle of locality (Lee et al 2010).

Figure 1 illustrates how cache memory

works. When an application is executed, data and

instructions are loaded into the main memory, and

the most accessed ones are kept in the cache to

avoid higher latency fetching in the main memory.

The closer the data is to the CPU, the faster it will

be accessed. The CPU fetches data or instruction

first in the cache levels, starting from the L1, L2,

L3 levels to the main memory, if the data is found

in one of the cache levels, the fetching ends.

Optimizations in the implementation of

algorithms are necessary to better use the available

hardware and obtain more performance when

running applications. The looping techniques

presented are useful when it comes to CPUs. But

another way to gain performance is through the use

of GPUs. A GPU is an architecture where there are

hundreds or even thousands of processing cores,

and its programming requires a programming

interface. In this work, NVidia's CUDA interface

was used (Kirk 2010).

The implementation of the algorithms

presented in this work uses order square matrices

4096×4096in the C language. This value exceeds

the cache memory size of the machine used,

making the visualization of performance gain with

cache optimization more remarkable. For the loop

tiling technique, a block size equal to 16x16 was

chosen, since this value fits completely in the L1

cache. For the parallel version with OpenMP, 16

threads were used, as the machine used has 16

physical cores. And for the CUDA version on the

GPU, blocks of size 32×32 were used, limiting the

number of threads per block to 1024. To analyze

the results, the algorithms were submitted to 30

executions and the times were averaged. The

number of runs chosen is due to the t-student

setting to stabilize the standard deviation.

The environment is used as a workstation,

with two Intel Xeon E5-2650 CPUs, each processor

has 8 physical cores, allowing the execution of 32

threads with Hyper-Threading. Each core has a

private L1 cache of 32" "And a private L2 cache of

256 KB. The last cache level is L3 with

20MBshared. An NVidia Titan Xp GPU with 3840

CUDA cores and 12GB of RAM was also used.

For the CPU, the compiler used was the GCC with

the -O2 optimization directive, and for the GPU,

the NVCC from NVidia was used.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 7 July 2022, pp: 195-199 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0407195199 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 197

Figure 1. Cache memory.

III. RESULTS AND DISCUSSION
Table 1 presents the average runtime and

performance gain of a parallel version over the

respective sequential version (speedup) and the

initial version time over each runtime collected

from each implementation. Initially, the sequential

execution time for a conventional array of order

4096 (Naive) without optimizations was 849.8

seconds.

Using loop tiling and loop interchange

optimization, we obtained an execution time of

165.7and 76.9seconds, respectively. Therefore, it is

concluded that if the computational environment to

be used has few cores, the indicated optimization

technique is a version of loop tiling or loop

interchange since they exploit the spatial and

temporal locality of the cache memory. In the tests,

they guaranteed performance of 5.12e 11.04times

in relation to the sequential version.

The parallel implementation with

OpenMP achieved a gain of 52.8times for loop

tiling and 100.39times for loop interchange in an

architecture composed of 16 cores. Thus, it is noted

that the multi-core computing environment allows

the application to be scaled expressively. In the

many-core architecture, the parallel potential

allowed a performance gain of up to 1720.3times

compared to the sequential version without

optimization used in the multi-core architecture.

Table 1: Execution Time and Performance Gain.

Implementation Version time(s) speedup
Gain over the initial

version

sequential
naive 849.845 1.00 1.00

Tiling 165.700 1.00 5.12

 interchange 76.918 1.00 11.04

OpenMP

naive 133.674 6.35 6.35

Tiling 16.086 10.30 52.83

interchange 8.465 9.08 100.39

CUDA naive 0.494 1720.33 1720.33

Table 1: Execution Time and Performance Gain.

Figure 5. Multiplication of matrices A and

B of order 4096x4096. The execution time

presented in Table 1 is also illustrated in the graph

of Figure 5, where the axis represents the

implementation used and the y axis presents the

respective execution time for an order matrix

4096×4096.

The performance gains are directly

associated with the optimal use of cache memory

and its locality principles from the loop techniques

and the number of processing cores used in each

architecture. Block sizes in the tiling loop (16x16)

were previously tested to present the best test case

in this research. In the case of GPUs, the best use

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 7 July 2022, pp: 195-199 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0407195199 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 198

of the architecture was using blocks of size 32×32, equivalent to up to 1024 threads per block.

Figure 5. Performance of loop tiling on matrix multiplication

IV. CONCLUSION
Due to the need for faster computations to

provide acceptable runtime results, loop

optimizations and parallel execution in multi-core

and many-core environments are necessary.

Looping techniques improve the use of cache

memory data, and parallel execution on multiple

processing cores makes it possible to compute data

concurrently. The sum of these techniques enables

high performance gains.

The multi-core and many-core

architectures allow parallel programming and task

distribution to each core according to the problem's

needs. The allocation of tasks and definition of

cores to be used is up to the programmer to decide

to provide the best way to obtain performance

gains. Therefore, it is necessary that the

programmer knows the architecture of the

computational environment and knows how to use

it in his favor since each application must be

programmed and optimized for the target

architecture.

REFERENCES
[1]. KIRK, DB; HWU, WW; Programming

Massively Parallel Processors: A Hands-On

Approach. 1st ed. San Francisco, CA, USA,

2010. Morgan Kaufmann Publishers Inc.

[2]. LEE, V. W.; et al. Debunking the 100X

GPU vs. CPU Myth: An Evaluation of

Throughput Computing on CPU and GPU.

SIGARCH Comput. Archit. News, v.38, n.3,

p.451-460, 2010.

[3]. MARQUEZAN, C.; et al. Análise de

Complexidade e Desempenho de Algoritmos

para Multiplicação de Matrizes. In: Escola

Regional de Alto Desempenho (ERAD/RS).

janeiro 2002; São Leopoldo; 2002. p.239-

242.

[4]. NAVARRO, C.A.; et al. A survey on

parallel computing and its applications in

data-parallel problems using GPU

architectures. Communications in

Computational Physics, v.15, n.2, p.285-

329, 2014.

[5]. SCHEPKE, C.; et al. Online mesh

refinement for parallel atmospheric models.

International Journal of Parallel

Programming, v.41, n.4, p.552-569, 2013.

[6]. Basel A. Mahafzah, "Performance

evaluation of parallel multithreaded A*

heuristic search algorithm." journal of

Information Science 40, no. 3 (2014): 363-

375.

[7]. Basel A. Mahafzah, "Parallel multithreaded

IDA* heuristic search: algorithm design and

performance evaluation." International

Journal of Parallel, Emergent and

Distributed Systems 26, no. 1 (2011): 61-82.

[8]. Al-Adwan, Aryaf, Basel A. Mahafzah, and

Ahmad Sharieh. "Solving traveling salesman

problem using parallel repetitive nearest

neighbor algorithm on OTIS-Hypercube and

OTIS-Mesh optoelectronic architectures."

The Journal of Supercomputing 74, no. 1

(2018): 1-36.

[9]. S. Dutta, S. Manakkadu, and D. Kagaris.

"Classifying performance bottlenecks in

multi-threaded applications." In 2014 IEEE

8th International Symposium on Embedded

Multicore/Manycore SoCs, pp. 341-345.

IEEE, 2014.

[10]. S. Manakkadu, and S. Dutta. "Bandwidth

based performance optimization of Multi-

threaded applications." In 2014 Sixth

International Symposium on Parallel

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 7 July 2022, pp: 195-199 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0407195199 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 199

Architectures, Algorithms and

Programming, pp. 118-122. IEEE, 2014.

[11]. Kavi, Krishna M., Roberto Giorgi, and

Joseph Arul. "Scheduled dataflow:

Execution paradigm, architecture, and

performance evaluation." IEEE Transactions

on Computers 50, no. 8 (2001): 834-846.

[12]. Islam, Mahzabeen, Marko Scrbak, Krishna

M. Kavi, Mike Ignatowski, and Nuwan

Jayasena. "Improving node-level mapreduce

performance using processing-in-memory

technologies." In European Conference on

Parallel Processing, pp. 425-437. Springer,

Cham, 2014.

[13]. T. Janjus, K. Krishna, and B. Potter.

"International conference on computational

science, iccs 2011 gleipnir: A memory

analysis tool." Procedia Computer Science 4

(2011): 2058-2067.

