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ABSTRACT: Scientific applications tend to deal 

with large volumes of data, as is the case with 

simulations of natural phenomena, which demand 

high computational power. Alternatively, using 

multi-core computers for processing contributes to 

performance improvement. However, performing 

specific optimizations for the target architecture 

can further influence performance. Therefore, the 

objective of this work is to evaluate the impact of 

optimization techniques on application 

performance as well as test the performance of 

these techniques in multi-core and many-core 

architectures. For that, a matrix multiplication 

algorithm was chosen for the application of Loop 

Interchange, and Loop Tiling techniques. 

Furthermore, this algorithm was parallelized with 

OpenMP and CUDA to explore the different 

processing cores of the computational architectures 

used. The results show that algorithms optimized 

for a target architecture gain performance, and this 

gain can reach 11 times in sequential optimizations 

for cache memory and 100 times in parallel 

execution with OpenMP on Intel Xeon E5-2650 

processors. Furthermore, this performance gain can 

be leveraged on the NVidia TITAN Xp GPU up to 

1720 times. 

 

KEYWORDS:Matrix Product, Algorithm 

Optimization, Multi-core, many-core architectures. 

 

I. INTRODUCTION 
Computing has revolutionized scientific 

research as it solves real science problems through 

numerically intensive calculations. Commonly real 

problems require a lot of input data because the 

more information is computed, the more accurate 

the results will be. But the more calculations are 

performed, the slower the execution, which implies 

the need for powerful machines to make it possible 

to obtain accurate results quickly. 

Parallel computing is necessary to enable 

the simulation and understanding of phenomena 

such as galaxy formation, molecular dynamics, 

genetic sequencing, mathematical simulations, oil 

prospecting, protein synthesis, weather forecasting, 

and geophysical studies, among others (Navarro et 

al 2014). Many applications are not feasible to be 

solved through sequential computations in a single 

processing core because of the time they take to 

provide their results. In meteorology, for example, 

application execution time is unfeasible in 

sequential architectures, as the response would be 

obtained after the phenomenon occurs (Schepke et 

al 2013). 

Professionals from different areas use computing to 

support their scientific research. The agility in the 

return of results during the execution of the 

applications is one of the factors that make possible 

the current scientific advance, requiring powerful 

computational resources for this purpose. Thus, in 

order to solve runtime problems and meet the 

processing needs of applications, there are multi-

core and many-core parallel architectures. The 

parallelism provided in these multi-core and many-

core machines makes it possible to run an 

application faster, as several tasks can be computed 

simultaneously on the various cores available in the 

hardware. 

High-Performance Computing (HPC) is 

the area of study that makes it possible to reduce 

the execution time of applications through the 

execution and optimization of algorithms in multi-

core and many-core architectures, enabling the 

resolution of problems each time. bigger in runtime 

smaller and smaller. For this research, two types of 

high-performance processors were used, the CPU 

(Central Processing Units, or Central Processing 

Unit) and the GPU (Graphics Processing Units, or 

Graphics Processing Units), which enable high 

computing capacity. 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 7 July 2022,   pp: 195-199 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0407195199     Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 196 

This work aimed to evaluate the 

performance of a matrix multiplication algorithm in 

multi-core and many-core architectures, 

highlighting the best optimization techniques used 

and comparing the execution time obtained 

between the Sequential, OpenMP (Open Multi-

Processing) and CUDA (Compute Unified Device 

Architecture). 

The rest of this article is organized as 

follows, Section 2 presents the methodology of this 

work. In Section 3 the results obtained are 

presented. Finally, Sections 4, 5, and 6 present the 

final considerations, the acknowledgments, and the 

references used, respectively.  

 

II. METHODOLOGY 
Matrices are fundamental operations of 

Linear Algebra. They are used for the 

representation of data in several areas of 

knowledge. An efficient algorithm for matrix 

calculus is important. When the order complexity 

increases, the operation demands greater 

performance capacity (Marquezan et al 2002). With 

the technological advance of the last decades, the 

algorithms need to be modified to better take 

advantage of the current computational power. 

Efficient implementation of the matrix 

product is critical as it appears in many scientific 

applications, as it mathematically models a linear 

function. The matrix multiplication A(mxn) × 

B(mxn) is given from the dot product between the 

row elements of matrix A and the column elements 

of matrix B, generating the corresponding matrix 

Cmxn. Every matrix has an mxn order to represent 

the size of the rows and columns, respectively, and 

its elements are represented by the letters i(rows) 

and j(columns).  

 

Although matrix multiplication is a simple 

operation, the way in which the elements are 

computed directly influences the performance of 

the operation. Depending on the way the 

programmer structures the algorithm, the execution 

time varies. An efficient implementation of 

calculus can reduce a run from many hours to 

minutes, or even seconds. 

The fetching of instructions and data by 

the processor is related to the communication 

between the CPU and the main memory. High main 

memory access latency is one of the performance 

limitations. The use of cache memory serves to 

minimize the impact of this latency, since it stores 

data frequently used by the processor based on the 

principle of locality (Lee et al 2010). 

Figure 1 illustrates how cache memory 

works. When an application is executed, data and 

instructions are loaded into the main memory, and 

the most accessed ones are kept in the cache to 

avoid higher latency fetching in the main memory. 

The closer the data is to the CPU, the faster it will 

be accessed. The CPU fetches data or instruction 

first in the cache levels, starting from the L1, L2, 

L3 levels to the main memory, if the data is found 

in one of the cache levels, the fetching ends. 

Optimizations in the implementation of 

algorithms are necessary to better use the available 

hardware and obtain more performance when 

running applications. The looping techniques 

presented are useful when it comes to CPUs. But 

another way to gain performance is through the use 

of GPUs. A GPU is an architecture where there are 

hundreds or even thousands of processing cores, 

and its programming requires a programming 

interface. In this work, NVidia's CUDA interface 

was used (Kirk 2010). 

The implementation of the algorithms 

presented in this work uses order square matrices 

4096×4096in the C language. This value exceeds 

the cache memory size of the machine used, 

making the visualization of performance gain with 

cache optimization more remarkable. For the loop 

tiling technique, a block size equal to 16x16 was 

chosen, since this value fits completely in the L1 

cache. For the parallel version with OpenMP, 16 

threads were used, as the machine used has 16 

physical cores. And for the CUDA version on the 

GPU, blocks of size 32×32 were used, limiting the 

number of threads per block to 1024. To analyze 

the results, the algorithms were submitted to 30 

executions and the times were averaged. The 

number of runs chosen is due to the t-student 

setting to stabilize the standard deviation. 

The environment is used as a workstation, 

with two Intel Xeon E5-2650 CPUs, each processor 

has 8 physical cores, allowing the execution of 32 

threads with Hyper-Threading. Each core has a 

private L1 cache of 32" "And a private L2 cache of 

256 KB. The last cache level is L3 with 

20MBshared. An NVidia Titan Xp GPU with 3840 

CUDA cores and 12GB of RAM was also used. 

For the CPU, the compiler used was the GCC with 

the -O2 optimization directive, and for the GPU, 

the NVCC from NVidia was used. 
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Figure 1. Cache memory. 

 

III. RESULTS AND DISCUSSION 
Table 1 presents the average runtime and 

performance gain of a parallel version over the 

respective sequential version (speedup) and the 

initial version time over each runtime collected 

from each implementation. Initially, the sequential 

execution time for a conventional array of order 

4096 (Naive) without optimizations was 849.8 

seconds. 

Using loop tiling and loop interchange 

optimization, we obtained an execution time of 

165.7and 76.9seconds, respectively. Therefore, it is 

concluded that if the computational environment to 

be used has few cores, the indicated optimization 

technique is a version of loop tiling or loop 

interchange since they exploit the spatial and 

temporal locality of the cache memory. In the tests, 

they guaranteed performance of 5.12e 11.04times 

in relation to the sequential version. 

The parallel implementation with 

OpenMP achieved a gain of 52.8times for loop 

tiling and 100.39times for loop interchange in an 

architecture composed of 16 cores. Thus, it is noted 

that the multi-core computing environment allows 

the application to be scaled expressively. In the 

many-core architecture, the parallel potential 

allowed a performance gain of up to 1720.3times 

compared to the sequential version without 

optimization used in the multi-core architecture. 

 

Table 1: Execution Time and Performance Gain. 

Implementation Version time(s) speedup 
Gain over the initial 

version 

sequential 
naive 849.845 1.00 1.00 

Tiling 165.700 1.00 5.12 

 interchange 76.918 1.00 11.04 

OpenMP 

naive 133.674 6.35 6.35 

Tiling 16.086 10.30 52.83 

interchange 8.465 9.08 100.39 

CUDA naive 0.494 1720.33 1720.33 

Table 1: Execution Time and Performance Gain. 

 

Figure 5. Multiplication of matrices A and 

B of order 4096x4096. The execution time 

presented in Table 1 is also illustrated in the graph 

of Figure 5, where the axis represents the 

implementation used and the y axis presents the 

respective execution time for an order matrix 

4096×4096. 

The performance gains are directly 

associated with the optimal use of cache memory 

and its locality principles from the loop techniques 

and the number of processing cores used in each 

architecture. Block sizes in the tiling loop (16x16) 

were previously tested to present the best test case 

in this research. In the case of GPUs, the best use 
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of the architecture was using blocks of size 32×32, equivalent to up to 1024 threads per block. 

 
Figure 5. Performance of loop tiling on matrix multiplication 

IV. CONCLUSION 
Due to the need for faster computations to 

provide acceptable runtime results, loop 

optimizations and parallel execution in multi-core 

and many-core environments are necessary. 

Looping techniques improve the use of cache 

memory data, and parallel execution on multiple 

processing cores makes it possible to compute data 

concurrently. The sum of these techniques enables 

high performance gains. 

The multi-core and many-core 

architectures allow parallel programming and task 

distribution to each core according to the problem's 

needs. The allocation of tasks and definition of 

cores to be used is up to the programmer to decide 

to provide the best way to obtain performance 

gains. Therefore, it is necessary that the 

programmer knows the architecture of the 

computational environment and knows how to use 

it in his favor since each application must be 

programmed and optimized for the target 

architecture. 

 

 

REFERENCES 
[1]. KIRK, DB; HWU, WW; Programming 

Massively Parallel Processors: A Hands-On 

Approach. 1st ed. San Francisco, CA, USA, 

2010. Morgan Kaufmann Publishers Inc. 

[2]. LEE, V. W.; et al. Debunking the 100X 

GPU vs. CPU Myth: An Evaluation of 

Throughput Computing on CPU and GPU. 

SIGARCH Comput. Archit. News, v.38, n.3, 

p.451-460, 2010. 

[3]. MARQUEZAN, C.; et al. Análise de 

Complexidade e Desempenho de Algoritmos 

para Multiplicação de Matrizes. In: Escola 

Regional de Alto Desempenho (ERAD/RS). 

janeiro 2002; São Leopoldo; 2002. p.239-

242. 

[4]. NAVARRO, C.A.; et al. A survey on 

parallel computing and its applications in 

data-parallel problems using GPU 

architectures. Communications in 

Computational Physics, v.15, n.2, p.285-

329, 2014. 

[5]. SCHEPKE, C.; et al. Online mesh 

refinement for parallel atmospheric models. 

International Journal of Parallel 

Programming, v.41, n.4, p.552-569, 2013. 

[6]. Basel A. Mahafzah, "Performance 

evaluation of parallel multithreaded A* 

heuristic search algorithm." journal of 

Information Science 40, no. 3 (2014): 363-

375. 

[7]. Basel A. Mahafzah,  "Parallel multithreaded 

IDA* heuristic search: algorithm design and 

performance evaluation." International 

Journal of Parallel, Emergent and 

Distributed Systems 26, no. 1 (2011): 61-82. 

[8]. Al-Adwan, Aryaf, Basel A. Mahafzah, and 

Ahmad Sharieh. "Solving traveling salesman 

problem using parallel repetitive nearest 

neighbor algorithm on OTIS-Hypercube and 

OTIS-Mesh optoelectronic architectures." 

The Journal of Supercomputing 74, no. 1 

(2018): 1-36. 

[9]. S. Dutta, S. Manakkadu, and D. Kagaris. 

"Classifying performance bottlenecks in 

multi-threaded applications." In 2014 IEEE 

8th International Symposium on Embedded 

Multicore/Manycore SoCs, pp. 341-345. 

IEEE, 2014. 

[10]. S. Manakkadu, and S. Dutta. "Bandwidth 

based performance optimization of Multi-

threaded applications." In 2014 Sixth 

International Symposium on Parallel 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 7 July 2022,   pp: 195-199 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0407195199     Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 199 

Architectures, Algorithms and 

Programming, pp. 118-122. IEEE, 2014. 

[11]. Kavi, Krishna M., Roberto Giorgi, and 

Joseph Arul. "Scheduled dataflow: 

Execution paradigm, architecture, and 

performance evaluation." IEEE Transactions 

on Computers 50, no. 8 (2001): 834-846. 

[12]. Islam, Mahzabeen, Marko Scrbak, Krishna 

M. Kavi, Mike Ignatowski, and Nuwan 

Jayasena. "Improving node-level mapreduce 

performance using processing-in-memory 

technologies." In European Conference on 

Parallel Processing, pp. 425-437. Springer, 

Cham, 2014. 

[13]. T. Janjus, K. Krishna, and B. Potter. 

"International conference on computational 

science, iccs 2011 gleipnir: A memory 

analysis tool." Procedia Computer Science 4 

(2011): 2058-2067. 


