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ABSTRACT: Real-time Facial Expression 

Detection system using Artificial Intelligence and 

Deep Learning. The project combined theoretical 

concepts with practical implementation, focusing on 

deep learning. A Convolutional Neural Network 

(CNN) was trained on the FER2013 dataset to 

classify seven emotions: Happy, Sad, Angry, 

Disgusted, Fearful, Surprised, and Neutral. Both a 

custom CNN and VGG16 (via transfer learning) 

were used to compare performance and training 

efficiency.[9] Technologies like Python, 

TensorFlow, Keras, and OpenCV were used. Key 

features included real-time webcam integration, face 

detection with Haar Cascades, and emotion 

prediction with visual overlays. The model training 

involved data augmentation and validation accuracy 

evaluation. The internship helped build key skills in 

model design, image pre-processing, real-time 

integration, and performance analysis, offering 

valuable insights into deploying AI in real-world 

applications. 

KEYWORDS: CNN, OPENCV, FER2013, 

Dataset, Image processing. 

 

I. INTRODUCTION 
This project goes beyond basic image 

classification by implementing a real-time facial 

expression detection system using deep learning. 

Leveraging CNN models trained on the FER2013 

dataset, along with OpenCV for face detection and 

live webcam input, the system efficiently identifies 

and classifies human emotions.[9] It demonstrates 

not only technical proficiency in AI/ML but also the 

ability to build responsive and intelligent solutions 

applicable in real-world environments.[1] 

 

Objectives:  

 To develop a deep learning model capable of 

accurately classifying facial expressions using 

the FER2013 dataset. 

 To integrate computer vision techniques 

(OpenCV) for real-time face detection from live 

webcam input[2]. 

 To design a responsive and user-friendly 

interface for real-time emotion monitoring. 

 To evaluate the performance of the CNN model 

using metrics such as accuracy, precision, 

recall, and F1-score on validation data. 

 To ensure real-time processing capabilities by 

optimizing the system for low-latency 

performance. 

 To demonstrate the practical applications of 

emotion detection, such as in human-computer 

interaction, mental health monitoring, or 

customer experience analysis. 

 To explore and implement data preprocessing 

and augmentation techniques to improve model 

generalization and robustness. 

 To validate the system in different lighting and 

background conditions, ensuring reliability in 

varied real-world environments. 

 To document the development process and 

provide reproducible code for further research 

and improvement. 

 To investigate ethical considerations and 

privacy implications associated with real-time 

facial analysis technologies. 

 

Motivation: 

Understanding human emotions is a 

fundamental aspect of effective human-computer 

interaction. The motivation behind this project stems 

from the growing demand for systems that can 

interpret and respond to human emotions in real 

time. Whether in mental health monitoring, 

customer service, or interactive entertainment, the 

ability to detect facial expressions enhances the 

responsiveness and empathy of AI systems. By 

leveraging deep learning and computer vision, this 

project aims to bridge the gap between machine 

perception and human emotional intelligence. The 

integration of CNNs with real-time video processing 
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highlights a practical and scalable approach to 

emotion recognition, moving from theoretical 

models to applications with tangible impact.[3] 

 

1.1 SYSTEM FUNCTIONALITY 

Deep learning is a key component in 

Machine Learning and Artificial Intelligence, 

excelling in tasks such as image recognition, object 

detection, and emotion classification. For our 

project, which focuses on facial expression 

detection, the goal is to identify and classify 

emotions from facial expressions in real-time. 

Unlike the use of emojis in communication, our 

system displays the textual description of the 

detected emotion.[4] 

The system employs Convolutional Neural 

Networks (CNNs) to perform feature extraction[3]. 

The architecture consists of convolutional layers, 

ReLU layers, and max-pooling layers for efficient 

learningand recognition. Data pre-processing steps 

include data augmentation and morphological 

operations to enhance the model’s performance and 

accuracy. 

In the Fig 3.1.1 facial expressions are 

defined as the configuration of facial muscles used 

to convey specific emotional states to an observer. 

Emotions can be classified into six broad categories: 

Anger, Disgust, Fear, Happy, Sad, Surprise, and 

Neutral. The goal is to train a model that can 

accurately differentiate between these emotions 

using a Convolutional Neural Network (CNN) with 

the FER2013 dataset.[1][5] 

[1]The model design begins with 

initializing the CNN architecture, where the input 

can be either a static or dynamic image. This model 

consists of several layers, including convolution 

layers for feature extraction, pooling layers for 

dimensionality reduction, flatten layers to convert 

data into a 1D array, and dense layers for 

classification. The convolution layers are crucial for 

achieving higher accuracy, especially with large 

datasets. The dataset, provided in CSV format with 

pixel values, is preprocessed by converting it into 

images. These images are then used to classify 

emotions based on the corresponding facial 

expressions. Additionally, hyperparameters are fine-

tuned to optimize model performance and accuracy. 

 

 

 
Fig 1.1.1 Block diagram of System 

 

II. EXPERIMENTATION 
The training phase, the system receives 

grayscale images of faces along with their 

corresponding emotion labels. It learns a set of 

weights for the CNN model.[5] The input to the 

system consists of facial images, and intensity 

normalization is applied to these images. The 

normalized images are then used to train the 

Convolutional Neural Network. To avoid 

performance bias due to the order in which the 

examples are presented, a validation dataset is used 

to select the best set of weights after performing 

training with samples in different orders. The output 

of the training phase is a set of weights that yield the 

best performance on the training data. 

During the testing phase, the system 

receives a grayscale image of a face from the test 

dataset and outputs the predicted emotion using the 

network weights learned during training. The output 

is a single label corresponding to one of the seven 

basic emotions: Happy, Sad, Angry, Surprise, 

Neutral, Disgust, or Fear. 
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SYSTEM ARCHITECTURE 

 

SOURCE CODE FOR MODEL TRAINING: 

train_dir= 

"C:\\Users\\avani\\Downloads\\archive\\train" 

val_dir= 

"C:\\Users\\avani\\Downloads\\archive\\test" 

train_datagen= 

ImageDataGenerator(rescale=1./255) 

val_datagen = ImageDataGenerator(rescale=1./255) 

 

train_generator= 

train_datagen.flow_from_directory( 

train_dir, 

target_size=(48,48), 

batch_size=64, 

color_mode="grayscale", 

class_mode='categorical') 

 

validation_generator= 

val_datagen.flow_from_directory( 

val_dir, 

target_size=(48,48), 

batch_size=64, 

color_mode="grayscale", 

class_mode='categorical') 

 

emotion_model = Sequential() 

 

emotion_model.add(Conv2D(32, kernel_size=(3, 3), 

activation='relu', input_shape=(48,48,1))) 

emotion_model.add(Conv2D(64, kernel_size=(3, 3), 

activation='relu')) 

emotion_model.add(MaxPooling2D(pool_size=(2, 

2))) 

emotion_model.add(Dropout(0.25)) 

 

emotion_model.add(Conv2D(128, kernel_size=(3, 

3), activation='relu')) 

emotion_model.add(MaxPooling2D(pool_size=(2, 

2))) 

emotion_model.add(Conv2D(128, kernel_size=(3, 

3), activation='relu')) 

emotion_model.add(MaxPooling2D(pool_size=(2, 

2))) 

emotion_model.add(Dropout(0.25)) 

 

emotion_model.add(Flatten()) 

emotion_model.add(Dense(1024, activation='relu')) 

emotion_model.add(Dropout(0.5)) 

emotion_model.add(Dense(7, activation='softmax')) 

 

cv2.ocl.setUseOpenCL(False) 

 

emotion_dict = {0: "Angry ", 1: "Disgusted", 2: 

"Fearful", 3: "Happy ", 4: "Neutral", 5: "Sad", 6: 

"Surprised"} 

 

emotion_model.compile(loss='categorical_crossentr

opy', optimizer=Adam(learning_rate=0.0001), 

metrics=['accuracy']) 

emotion_model_info = emotion_model.fit( 

train_generator, 
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steps_per_epoch=28709 // 64, 

        epochs=3, 

validation_data=validation_generator, 

validation_steps=7178 // 64) 

emotion_model.save_weights('emotion_model.weig

hts.h5') 

 

III. MODEL TESTING AND EVALUTION 
After training the model for 50 epochs, the 

testing results showed that the CNN model was able 

to learn and improve over time. In the last 10 epochs 

(41 to 50), the training accuracy ranged from 65% to 

75%, and the validation accuracy stayed between 

59% to 60%.[3][5] 

These results show that the model performs 

well, but the validation accuracy can be improved 

further by tuning the model or using more data. 

 
 

TESTING RESULT:   

 

IV. CONCLUSION 
The Real-time Facial Expression 

Detection system successfully demonstrated the 

integration of deep learning with computer vision 

to recognize human emotions through facial 

expressions. By leveraging both a custom-built 

CNN and the pre-trained VGG16 model via 

transfer learning, the project enabled a comparative 

analysis of model performance and efficiency. The 

use of the FER2013 dataset, along with data 

augmentation techniques, improved the model's 

ability to generalize across diverse facial 

expressions.The system’s real-time capabilities—

achieved through webcam integration, face 

detection via Haar Cascades, and visual emotion 

overlays—highlight its practical applicability in 

areas like human-computer interaction, 

surveillance, and user experience enhancement. 
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Technologies such as Python, TensorFlow, Keras, 

and OpenCV played a crucial role in building and 

deploying this solution. 

This project not only deepened 

understanding of core concepts like CNN 

architecture, image preprocessing, and transfer 

learning but also provided hands-on experience in 

integrating AI models into real-world systems. 

Overall, the internship experience.  
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