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ABSTRACT: The solution of a problem of
analogue circuit optimization is mathematically
defined as a controllable dynamic system. In this
context the minimization of the processor time of
designing can be formulated as a problem of time
minimization for transitional process of dynamic
system. A special control vector that changes the
internal structure of the equations of optimization
procedure serves as a principal tool for searching the
best strategies with the minimal CPU time. In this
case a well-known maximum principle of
Pontryagin is the best theoretical approach for
finding of the optimum structure of control vector.
Practical approach for realization of the maximum
principle is based on the analysis of behaviour of a
Hamiltonian for various strategies of optimization. It
is shown that in spite of the fact that the problem of
optimization is formulated as a nonlinear task, and
the maximum principle in this case isn't a sufficient
condition for obtaining a minimum of the
functional, it is possible to obtain the decision in the
form of local minima. The relative acceleration of
the CPU time for the best strategy found by means
of maximum principle compared with the traditional
approach is equal two to three orders of magnitude.
KEYWORDS: Analog circuits optimization,
optimal strategy, theory of control, maximum
principle, acceleration effect.

I. INTRODUCTION

The problem of reducing processor time
spent on the optimization of electronic circuits is
one of the important problems associated with
improving the quality of design. Some works
devoted to this problem are devoted to how to
reduce the number of operations in solving two
main problems: circuit analysis and numerical
optimization. Solving these problems gives us a
significant reduction in CPU time. Methods that can
be used in the analysis of complex systems are being
improved. Some ideas regarding the use of the
sparse matrix method [1-2] and decomposition
methods [3] are used to reduce the analysis time of
circuits. Other alternative methods such as

homotopy methods [4] were successfully applied for
circuit analysis too.

Some methods of optimization were
developed for circuit designing, timing, and area
optimization [5-6]. However, classical deterministic
optimization algorithms may have a number of
drawbacks: they may require that a good initial
point be selected in the parameter space, they may
reach an unsatisfactory local minimum, and they
require that the cost function be continuous and
differentiable. To overcome these issues, special
methods were applied to determine the initial point
of the process by centering [7], or by applying
geometric programming methods [8].

Other  formulation of the circuit
optimization problem was developed at a heuristic
level some decades ago [9]. This approach ignored
Kirchhoff’s laws for all the circuit or part of it. The
practical aspects of this idea were developed for the
optimization of microwave circuits [10] and for the
synthesis of high-performance analog circuits [11]
in case where all the equations of the circuit model
were not solved during the total optimization
process.

The new formulation of the problem of
circuit optimization is formulated in terms of the
theory of optimal control [12-13]. In this case the
process of circuit optimization was generalized and
defined as the dynamic controllable system. A basic
element is the control vector that changes the
structure of the equations of system of optimization
process. Thus there is a set of the strategies of
optimization that have different number of
operations and different processor time. Introduction
of the function of Lyapunov of the optimization
process [14] allows to compare various strategies of
optimization and to choose the best of them having
the minimum processor time. At the same time, the
solution to the problem of finding the optimal
strategy and the corresponding optimal trajectory
can be found within the framework of the
Pontryagin maximum principle [15].

The main complexity of application of the
maximum principle consists of the search of initial
values for auxiliary variables at the solution of the
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conjugate system of equations. Application of the
maximum principle in case of linear dynamic
systems is based on the creation of an iterative
process [16-17]. In case of nonlinear systems, the
convergence of this process is not guaranteed.
However,  application of the  additional
approximating  procedures  [18-19]  allows
constructing sequence of the solutions converging to
a limit under certain conditions.

Section 2 gives the formulation of the
circuit optimization process based on the methods of
control theory using a control vector. Section 3
gives an example of the application of the maximum
principle for optimizing the simplest nonlinear
circuit. It is shown that analysis of the Hamiltonian
behaviour allows one to obtain the exact structure of
a control vector that minimizes processor time.

II. PROBLEM FORMULATION
We define the optimization process for
analog circuit as the problem of minimization of the

generalized cost function F (X U ) by the equation
(1) with the constraints (2):
X =X+t H*, (1)
(1—u)e,(X)=0./=12,... M, )
where XeRY, X = (X',X"), X'eR¥, is the
vector of the independent variables and the vector
X"eR"Y is the vector of dependent variables
(N=K+M), s is the iterations number, Z_ is the

iteration parameter, f € R', g ,.(X) presents the

equation j of the circuit’s model, H=H(X,U) is the
direction of the generalized cost function F(X,U)
decreasing, U is the vector of the special control
functions U =(u,,u,,...,u, ), where u, €Q,

Q= {O;l}. The generalized cost function F(X,U) is
defined as:

F(X,U)=C(X)+ (X, U) ?3)
where C(X) is the non-negative cost function of the
designing process, and y/(X U ) is the additional
penalty function:

M
w(XaU)iZui -g31(X). 4)
Jj=1

By means of this formulation we
redistribute the computer time expense between the
solution of problem (2) and the optimization
procedure (1) for the function F (X U ) The

control vector U is the main tool for the
redistribution process in this case. The problem of
search of the optimal design strategy with a minimal
CPU time is formulated as the typical problem for

the functional minimization of the control theory.
The functional that needs to minimize is the total
CPU time T of the design process. This functional
depends on the operations number and on the
strategy of designing that has been realized. The
main difficulty of this definition is unknown optimal
dependencies of all control functions u It

The Eq.(1) can be replaced by the
differential equation in continuous form using the
next formula:

dx; .
i = (X, U), i=12,.,N, 5)

The equations (2), (3), (4) and (5) compose
the continuous form of the design process. The
functions of the right hand part of the system (5) can
be determined for example for the gradient method
by means of the next expression:

£(X,U0)= _gF(X’U), i=12,...,K, (6)

i

£(6U) =, - F(X.U)

+ (1 _ui—l()

—x; + 1, (X
e ()
i=K+1L,K+2,..,N, (6
where the operator ¢/ Ok, hear and below means

S Fp(X) Y op(X) &
S, &, 5 &, &

X, is equal to xi(t —dt):; 771(X) is the implicit
function (x, =7(X)) that is determined by system (2).
The control variables u j have the time

dependency in general case. The equation number j
is removed from (2) and the dependent variable
X, ; 1s transformed to the independent when u ;=1.
This independent parameter is defined by the
formulas (5), (6"). In this case there is no difference
between formulas (6) and (6'). The transformation of
the vectors X' and X" can be done at any time
moment.

We need to find the optimal behaviour of
the control functions #; during the optimization

process to minimize the total computer time of
designing. The more adequate method for solution
of this problem is the maximum principle of
Pontryagin.

1. MAXIMUM PRINCIPLE

The main complexity of application of the
maximum principle consists of the search of initial
values for auxiliary variables at the solution of the
conjugate system of equations. Application of the
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maximum principle for the linear dynamic systems
is based on creation of iterative process [16].

In case of nonlinear systems the
convergence of this process isn't guaranteed,
however application of the additional approximating
procedures [17-19] allows constructing sequence of
the solutions meeting to a limit under certain
conditions. In the present work the possibility of
application of the maximum principle for creation of
the optimal control vector and the optimal trajectory
of optimization process corresponding to it is
investigated. The example of optimization of the
simplest nonlinear circuit for which the analytical
solution of the task was obtained is investigated. We
will consider a nonlinear circuit of a voltage divider
in Figure 1.

Figure 1: Simplest nonlinear circuit of voltage
divider

Let us consider that the nonlinear element
has the following dependence:

R,=a+b(V;=V,), Y
where a>0, b>0, a>b, V0 and V| the voltages on

an entrance and an exit of circuit.
We will consider that V, is equal 1. We

will define the variables xi, x2. x, = R, x, =V,.

Thus the vector of phase variables X € R? . In this
case the formula (7) can be replaced with the
following expression:
R, =a+b(x,—1). ®)
We can present the equation of a circuit in
the form:
gl(xl,xz)zxz[xl+a—|—b(x2—l)]—x1=0 ©)
The circuit optimization is formulated as a
problem of obtaining at the exit of a circuit of the

defined voltage w. We will determine the cost
function of the optimization process by a formula:

C(X)=(x, —w). (10)

In this case the problem of circuit
optimization is converted to minimization of the
cost function C(X ) Following theoretical basis,

that were developed in [12], we formulate the
problem for circuit optimization as a task of search

of the optimization strategy with a minimum
possible CPU time. For this purpose we define the
functional, which is subject to minimization, by the
following expression:

T
J:_[fo(X) dt, (11
0

where fO(X ) the function which is conditionally

determining density of number of arithmetic
operations in unit of time of ¢ In that case, the
integral (5) defines total number of operations
necessary for circuit optimization and is
proportional to the total CPU time.

The structure of function fO(X ) can't be

defined; however we can compute CPU time, using
possibilities of the compiler. We will identify
further the integral (11) with CPU time and
therefore the problem of minimization of CPU time
corresponds to a problem of minimization of the
integral (11).

According to [12] we introduce the control
vector U that consists of only one component u(z)
for the reviewed example. This component has one
of two possible values: 0 or 1. The control vector
allows to generalize the circuit optimization process
and to define a set of the optimization strategies
differing in operations number and CPU time. The
generalized cost function can be defined in this case
by means of the formula:

F(X)=C(X)+o(X), (12)
where qo(X ) is an additional penalty function,

which can be determined, for example, by the
following formula:

M
o(X)=2u;-gi(x). 1y
j=1

where M is the number of nodes of the circuit. In
our case M=1. The process of circuit optimization
thus can be described by the system (14) with
restrictions (15):

%:f;‘('xlaxzau)’ =12, (14)
(1-u)g (x,x,)=0, (13)

where functions ﬁ(xl,xz,u) are defined by a

concrete numerical method of optimization. When
using a gradient method these functions are defined
by the following formulas:

f,.(xl,xz,u)= —%F(X), i=1,2.  (16)

1
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The wvalue u(?)=0 corresponds to the
traditional strategy of optimization (TSO). In this
case in system (14) there is only one equation for
the independent x; variable while the variable x; is
defined from the equation (15). The value u(?)=1
corresponds to the modified traditional strategy of
optimization (MTSO) when both x; and x, variables
are independent. In this case the system (14)
includes two equations for the independent variables
X1 ¥ X2, and the equation (15) disappears. Change of
the value of function u(z) with 0 on 1 and back can
be made at any moment, and generates a set of
various strategies of optimization. Two main
strategies of structural basis can be defined by
means of the next two approaches.

1) TSO, u=0. The equations (14), (16) are replaced
with the following equations:

dx, _ 0C dx,

- (17)
dt dx, dx,
dix,(x,,1) _ O, d; (18)
di o, dt

where the derivative dx, /dx, is defined from the
equation (9), and

&—L —1+ X +e+2b , c=a-b.

dx, 2b \/ (x, +c) +4bx,

2) MTSO, u=1. The equations (14) are transformed
to the next one:

dx, o
%:—5[C(X)+ g2 (X)) =1.2. 19

In general case the right hand parts of the
equations (14) can be presented in the form:

fl(xlaxz»“):(1_”)'f11(x17x2)+”'flz(xlaxz)a

(20)
fz(xlaxz’“)z(1_”)'](21(x19x2)+”'fzz(xlaxz)a

where the functions fl.j (xl , xz) are determined by

the following formulas:

f“(xl,xz):(w_xZ) B x1+cz+2b
b \/(x1+c) + 4bx,
flz(xhxz): _2(x2 —1){()62 _l)xl + [a +b(x2 _1) 2}
(21
f21(x1 xz):(w—xz) 14 x+a+b

20 \/ (x, +c) +4bx,
foa(0,) = =2{(x, = W)+ (c + 3, +2bx,)
[(x, =Dx; +ax, +b(x, —x,1}

According to methodology of the
maximum principle, the system of the conjugate

equations for additional variables ¥/, , Y/, has the
next form:

dy, __afl(xl’xzﬂu).l// _ afz(xl,xz,u)_w

1 22

dt Ox, Ox,

(22)
dy, :_afl(xlaxz’”)_l// _afz(xlaxzau),l//
dt ox, 1 ox, g

where the partial derivatives of functions
f;.(xl,xz,u), i=1, 2 can be calculated by
formulas (20), (23).

afn(xlsxz) _ (xz _W)4a

ox, [(xl + c)2 + 4bxl] 2
af;2(xl’x2) _ _2(x _ 1)2

ox, g
6f21(x1,x2)=_(w—x2) 1+ x+a+b

ox, b (x, +c) +4bx,

‘ 4a
[(x1 + 0)2 +4be] "
Polbte) (s, 1 bl 1),
X1

+(c+x, +2bx,)(x, 1)}
(23)

x,+a+b
\/ (x1 +c)2 + 4bx,

afll(xPXZ):_l —1+

ox, b

Folota) gy, 1)~ fas b, -
—2(x, —1)[bx, +a+b(x, -1)]

2
Ol x,) 1

0ox, 2b

x,+a+b
\/ (x1 +c)2 +4bx,

8fzz(gxl ,Xz) =—2{1+2b[(x, —)x, +bx; +cx, ]
X,

+(c+x, +2bx,)%}

The Hamiltonian is expressed by the

following formula:
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H=y, 'fl(xl’xza”)"'W2 'fz(xl’xz’”) (24)

Substituting (14) in (17) and (18) and doing
identical transformations we obtain the following
expression for a Hamiltonian:

H=y, 'fn(xlaxz)"H//z 'f21(x15x2)
+u-®(x1,x2,(//1,l//2)

where

q)(xlax2>W1aW2): ¥ '[ﬂz(xlax2)_ﬁ1(xlaxz)] .
TV, '[fzz(xwxz)_le(xlaxz)]
According to the maximum principle, we

obtain the next main condition for the control
function u:

0, D<0
u= (26)
{1, Dd>0

(25)

The behaviour of the control function u(z)
that corresponds to the maximum principle is
defined also by behaviour of functions y, (t) and

v, (t), which are computed from the equations
(22). At the same time the solution of the equations
(22) depends on initial values /,, and ¥,,, which
are defined within the precision of common
multiplier. One of these constants can be taken
arbitrary. Let us define the constant y/,, =—1. The

value of ,, that corresponds to the adequate

solution of a task in the conditions of the maximum
principle can be obtained by iterative procedure. We
use iterative procedure on the basis of the Newton
method that provides the solution for the minimum
time.

The analysis of optimization process for a
similar example which is carried out in work [17]
showed that the TSO (¥=0) is optimal one when

initial values of variables >, and X, , (X, X, )
are positive. At the same time the negative initial
values of the variable X, leads to significantly
other results. In case of negative initial values of
variable X, , emergence of effect of acceleration

of the process of circuit optimization is possible.
This effect accelerates the optimization process in
some times. It is interesting to check, whether it is
possible to obtain similar result on the basis of
maximum principle.

Figure 2 shows the trajectory of the process
of circuit optimization in phase space of two

variables X, , X, , corresponding to the initial
point (X, =1, X, =1) that was obtained with a

main condition of the maximum principle (26).

X, s
1.5 P
u=0

0 , -

06 X,

Figure 2: Trajectories of optimization process in
phase space for initial point x,, =1, x,, =1

In this case the optimum trajectory
corresponds to TSO and the constant value u=0.
Thus the number of iterations is equal to 3719 and
time of the CPU is equal to 20.45 msec. Changing
of the initial point of S at any other positive values

of coordinates x, , X, , doesn't lead to change of a
trajectory. However the negative value of coordinate
X, leads to essential change of the solution. The
trajectories of process of circuit optimization
corresponding to the initial point ( X;, =1, X,, = -

1) are shown in Figure 3.

X2
t
A

l 06 X,
765“ 1
43

Figure 3: Trajectories of optimization process in

o

phase space for initial point x, =1, x,,=-1
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The structure of function u(?) that was
obtained automatically and corresponds to a
condition of the maximum principle (26) has one
point of a rupture that corresponds to switching from
the trajectory corresponding to MTSO (u=1, a dotted
curve) on trajectory corresponding to TSO (u=0, a
continuous curve). Coordinates of a point of

switching of #w depend on value of ¥,,. The data

corresponding to points 1, 2, 3,4, 5, 6 and 7 in Fig. 3
are presented in Table 1.

Table 1: Data for different initial value

N | ,, |[lterations|Time

number |(msec)
1] 40.00 3568| 19.620
2| 30.00 3383| 18.613
3| 20.00 2790] 15.351
41 16.00 1810 9.962
5| 14.35 277 1.520
6| 10.00 1152 6.310
7| 2.00 1887| 10.781

Change of the value of ¥,, from 40.0 till

14.35 leads to reduction of iterations number and
CPU time from 19.62 msec to 1.520 msec, but the
CPU time is increasing later on. That is visible also
in Figure 4, where the dependence of CPU time of
the solution of a task from initial value ¥/, is

shown.

T

msec

20 +
15+
10 +
51

0 100 200 300 40.0 ¥,

Figure 4: CPU time as function of parameter y,,

The value ¥ 5, = 14.35 corresponds to

the minimum CPU time Tmin and integral J, and is
the same initial value of variable 1//2(1‘) which,

according to the maximum principle, provides the
maximum and constant value of a Hamiltonian of H.
The gain in time computed as time relation for TSO
by the minimum time of Tiyin thus equal to 13.45
times. Dependences of the functions y,(z) and

l//z(t), and also a Hamiltonian of H(#) are
presented in Figure 5.

Y Y, b H V,,=14.35
80 ———

60T
40+

201 ¥,

_20 1 msec

Figure 5: Dependencies of i/, (t), v, (t) and H(1)

for optimal ¥/,

Hamiltonian in this case is a constant and
this fact corresponds to the maximum principle. It is
interesting to analyze behaviour of these functions
with a non-optimal point of switching #w of the
control function u(#). Dependences of u(?) in change
of tw as parameter are presented in Figure 6 and
Figure 7.

Y, W 4H ¥,,=10.35 /
80 /
/'y,
60 1 H /
104 7
201 -7
0— : : : e
T2 ¢ 5 & T
201 v,
401

Figure 6: Dependencies of ¥/, (t), v, (t) and H(1)
for l//20 < l//ZOGpt
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