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ABSTRACT: The solution of a problem of 

analogue circuit optimization is mathematically 

defined as a controllable dynamic system. In this 

context the minimization of the processor time of 

designing can be formulated as a problem of time 

minimization for transitional process of dynamic 

system. A special control vector that changes the 

internal structure of the equations of optimization 

procedure serves as a principal tool for searching the 

best strategies with the minimal CPU time. In this 

case a well-known maximum principle of 

Pontryagin is the best theoretical approach for 

finding of the optimum structure of control vector. 

Practical approach for realization of the maximum 

principle is based on the analysis of behaviour of a 

Hamiltonian for various strategies of optimization. It 

is shown that in spite of the fact that the problem of 

optimization is formulated as a nonlinear task, and 

the maximum principle in this case isn't a sufficient 

condition for obtaining a minimum of the 

functional, it is possible to obtain the decision in the 

form of local minima. The relative acceleration of 

the CPU time for the best strategy found by means 

of maximum principle compared with the traditional 

approach is equal two to three orders of magnitude. 

KEYWORDS: Analog circuits optimization, 

optimal strategy, theory of control, maximum 

principle, acceleration effect. 

 

I. INTRODUCTION 
The problem of reducing processor time 

spent on the optimization of electronic circuits is 

one of the important problems associated with 

improving the quality of design. Some works 

devoted to this problem are devoted to how to 

reduce the number of operations in solving two 

main problems: circuit analysis and numerical 

optimization. Solving these problems gives us a 

significant reduction in CPU time. Methods that can 

be used in the analysis of complex systems are being 

improved. Some ideas regarding the use of the 

sparse matrix method [1-2] and decomposition 

methods [3] are used to reduce the analysis time of 

circuits. Other alternative methods such as 

homotopy methods [4] were successfully applied for 

circuit analysis too. 

Some methods of optimization were 

developed for circuit designing, timing, and area 

optimization [5-6]. However, classical deterministic 

optimization algorithms may have a number of 

drawbacks: they may require that a good initial 

point be selected in the parameter space, they may 

reach an unsatisfactory local minimum, and they 

require that the cost function be continuous and 

differentiable. To overcome these issues, special 

methods were applied to determine the initial point 

of the process by centering [7], or by applying 

geometric programming methods [8].  

Other formulation of the circuit 

optimization problem was developed at a heuristic 

level some decades ago [9]. This approach ignored 

Kirchhoff’s laws for all the circuit or part of it. The 

practical aspects of this idea were developed for the 

optimization of microwave circuits [10] and for the 

synthesis of high-performance analog circuits [11] 

in case where all the equations of the circuit model 

were not solved during the total optimization 

process. 

The new formulation of the problem of 

circuit optimization is formulated in terms of the 

theory of optimal control [12-13]. In this case the 

process of circuit optimization was generalized and 

defined as the dynamic controllable system. A basic 

element is the control vector that changes the 

structure of the equations of system of optimization 

process. Thus there is a set of the strategies of 

optimization that have different number of 

operations and different processor time. Introduction 

of the function of Lyapunov of the optimization 

process [14] allows to compare various strategies of 

optimization and to choose the best of them having 

the minimum processor time. At the same time, the 

solution to the problem of finding the optimal 

strategy and the corresponding optimal trajectory 

can be found within the framework of the 

Pontryagin maximum principle [15]. 

The main complexity of application of the 

maximum principle consists of the search of initial 

values for auxiliary variables at the solution of the 
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conjugate system of equations. Application of the 

maximum principle in case of linear dynamic 

systems is based on the creation of an iterative 

process [16-17]. In case of nonlinear systems, the 

convergence of this process is not guaranteed. 

However, application of the additional 

approximating procedures [18-19] allows 

constructing sequence of the solutions converging to 

a limit under certain conditions. 

Section 2 gives the formulation of the 

circuit optimization process based on the methods of 

control theory using a control vector. Section 3 

gives an example of the application of the maximum 

principle for optimizing the simplest nonlinear 

circuit. It is shown that analysis of the Hamiltonian 

behaviour allows one to obtain the exact structure of 

a control vector that minimizes processor time. 

 

II. PROBLEM FORMULATION 

We define the optimization process for 

analog circuit as the problem of minimization of the 

generalized cost function ( )UXF ,  by the equation 

(1) with the constraints (2): 

       
s

s

s1s HtXX +=+  ,         (1) 

      
( ) ( ) 0Xgu1 jj =− , ,        (2) 

where 
NRX , ( )X,XX = , 

KRX  , is the 

vector of the independent variables and the vector 
MRX   is the vector of dependent variables          

( MKN += ), s is the iterations number, st is the 

iteration parameter, 1Rt s  , ( )Xjg  presents the 

equation j of the circuit’s model,  HH(X,U) is the 

direction of the generalized cost function F(X,U) 

decreasing, U is the vector of the special control 

functions ( )Muuu ,...,,U 21= , where ju , 

. The generalized cost function F(X,U) is 

defined as: 

( ) ( ) ( )UX,XCUX,F +=         (3) 

where  C(X) is the non-negative cost function of the 

designing process, and ( )UX ,  is the additional 

penalty function: 

  ( ) ( )
=

=
M

j

jj gu
1

2 X
1

UX,


 .       (4)  

By means of this formulation we 

redistribute the computer time expense between the 

solution of problem (2) and the optimization 

procedure (1) for the function ( )UXF , . The 

control vector U is the main tool for the 

redistribution process in this case. The problem of 

search of the optimal design strategy with a minimal 

CPU time is formulated as the typical problem for 

the functional minimization of the control theory. 

The functional that needs to minimize is the total 

CPU time T of the design process. This functional 

depends on the operations number and on the 

strategy of designing that has been realized. The 

main difficulty of this definition is unknown optimal 

dependencies of all control functions u j . 

The Eq.(1) can be replaced by the 

differential equation in continuous form using the 

next formula: 

 ( )UX,i
i f

dt

dx
= ,  ,        (5) 

The equations (2), (3), (4) and (5) compose 

the continuous form of the design process. The 

functions of the right hand part of the system (5) can 

be determined for example for the gradient method 

by means of the next expression: 

( ) ( )UX,UX, F
x

f
i

i



−= ,  ,    (6) 

( ) ( )

( )
( ) X

1

UX,UX,
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s
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x
dt
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F
x

uf







+−
−

+

−=

−

−

,   

 ,          (6') 

where the operator 
ix /  hear and below means 

( )
( ) ( )














x
X

X

x

X

x

x

xi i pp K

K M
p

i

= +
= +

+


1

, 

s

ix  is equal to ( )x t dti − ; ( )i X  is the implicit 

function ( ( )x Xi i= ) that is determined by system (2). 

The control variables u j  have the time 

dependency in general case. The equation number j 

is removed from (2) and the dependent variable 

xK j+  is transformed to the independent when u j =1. 

This independent parameter is defined by the 

formulas (5), (6'). In this case there is no difference 

between formulas (6) and (6'). The transformation of 

the vectors X  and X  can be done at any time 

moment.  

We need to find the optimal behaviour of 

the control functions u j  during the optimization 

process to minimize the total computer time of 

designing. The more adequate method for solution 

of this problem is the maximum principle of 

Pontryagin. 

 

III. MAXIMUM PRINCIPLE 

The main complexity of application of the 

maximum principle consists of the search of initial 

values for auxiliary variables at the solution of the 

conjugate system of equations. Application of the 

j M= 1 2, ,...,

 = 0 1;

Ni ,...,2,1=

i K=12, ,...,

i K K N= + +1 2, ,...,
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maximum principle for the linear dynamic systems 

is based on creation of iterative process [16]. 

In case of nonlinear systems the 

convergence of this process isn't guaranteed, 

however application of the additional approximating 

procedures [17-19] allows constructing sequence of 

the solutions meeting to a limit under certain 

conditions. In the present work the possibility of 

application of the maximum principle for creation of 

the optimal control vector and the optimal trajectory 

of optimization process corresponding to it is 

investigated. The example of optimization of the 

simplest nonlinear circuit for which the analytical 

solution of the task was obtained is investigated. We 

will consider a nonlinear circuit of a voltage divider 

in Figure 1. 
 

 
Figure 1: Simplest nonlinear circuit of voltage 

divider 
 

Let us consider that the nonlinear element 

has the following dependence: 

( )01 VVbaRn −+= ,        (7) 

where a>0, b>0, a>b,  0V  and 1V  the voltages on 

an entrance and an exit of circuit. 

We will consider that 0V  is equal 1. We 

will define the variables x1, x2. Rx =1 , 12 Vx = . 

Thus the vector of phase variables 
2RX  . In this 

case the formula (7) can be replaced with the 

following expression: 

            ( )12 −+= xbaRn .         (8) 

We can present the equation of a circuit in 

the form: 

( ) ( )  01, 1212211 =−−++ xxbaxxxxg       (9) 

The circuit optimization is formulated as a 

problem of obtaining at the exit of a circuit of the 

defined voltage w. We will determine the cost 

function of the optimization process by a formula: 

           ( ) ( )22 wxXC −= .     (10) 

In this case the problem of circuit 

optimization is converted to minimization of the 

cost function ( )XC . Following theoretical basis, 

that were developed in [12], we formulate the 

problem for circuit optimization as a task of search 

of the optimization strategy with a minimum 

possible CPU time. For this purpose we define the 

functional, which is subject to minimization, by the 

following expression: 

 

( )=
T

dtXfJ
0

0
,      (11) 

where ( )Xf0  the function which is conditionally 

determining density of number of arithmetic 

operations in unit of time of t. In that case, the 

integral (5) defines total number of operations 

necessary for circuit optimization and is 

proportional to the total CPU time. 

The structure of function ( )Xf0  can't be 

defined; however we can compute CPU time, using 

possibilities of the compiler. We will identify 

further the integral (11) with CPU time and 

therefore the problem of minimization of CPU time 

corresponds to a problem of minimization of the 

integral (11). 

According to [12] we introduce the control 

vector U that consists of only one component u(t) 

for the reviewed example. This component has one 

of two possible values: 0 or 1. The control vector 

allows to generalize the circuit optimization process 

and to define a set of the optimization strategies 

differing in operations number and CPU time. The 

generalized cost function can be defined in this case 

by means of the formula: 

       ( ) ( ) ( )XXCXF += ,      (12) 

where ( )X  is an additional penalty function, 

which can be determined, for example, by the 

following formula: 

     

( ) ( )
=

=
M

j

jj XguX
1

2 ,      (13) 

where M is the number of nodes of the circuit. In 

our case M=1. The process of circuit optimization 

thus can be described by the system (14) with 

restrictions (15): 

( )uxxf
dt

dx
i

i ,, 21= ,   i=1, 2,        (14) 

( ) ( ) 0,1 211 =− xxgu ,      (15) 

 

where functions ( )uxxfi ,, 21  are defined by a 

concrete numerical method of optimization. When 

using a gradient method these functions are defined 

by the following formulas: 

      

( ) ( )XF
x

uxxf
i

i



−=,, 21

,   i=1, 2.     (16) 
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The value u(t)=0 corresponds to the 

traditional strategy of optimization (TSO). In this 

case in system (14) there is only one equation for 

the independent x1 variable while the variable x2 is 

defined from the equation (15). The value u(t)=1 

corresponds to the modified traditional strategy of 

optimization (MTSO) when both x1 and x2 variables 

are independent. In this case the system (14) 

includes two equations for the independent variables 

x1 и x2, and the equation (15) disappears. Change of 

the value of function u(t) with 0 on 1 and back can 

be made at any moment, and generates a set of 

various strategies of optimization. Two main 

strategies of structural basis can be defined by 

means of the next two approaches. 

1) TSO, u=0. The equations (14), (16) are replaced 

with the following equations: 

1

2

2

1

dx

dx

dx

C

dt

dx 
−=        (17) 

( )
dt

dx

x

x

dt

txdx 1

1

212 ,




=        (18) 

where the derivative 
12 / dxdx  is defined from the 

equation (9), and 

( ) 













++

++
+−=

1

2

1

1

1

2

4

2
1

2

1

bxcx

bcx

bdx

dx
, с=a-b. 

2) MTSO, u=1. The equations (14) are transformed 

to the next one: 

( ) ( ) XgXC
xdt

dx

i

i 2

1+−=



, i=1, 2.   (19) 

In general case the right hand parts of the 

equations (14) can be presented in the form: 

( ) ( ) ( ) ( )21122111211 ,,1,, xxfuxxfuuxxf +−= ,  

          (20) 

( ) ( ) ( ) ( )21222121212 ,,1,, xxfuxxfuuxxf +−= , 

where the functions ( )21, xxfij  are determined by 

the following formulas: 

( )
( )

( ) 













++

++
+−

−
=

1

2

1

12
2111

4

2
1,

bxcx

bcx

b

xw
xxf  

( ) ( ) ( ) ( )  221222112 1112, xxbaxxxxxf −++−−−=             

                      (21) 

( )
( )

( )

2

1

2

1

1

2

2
2121

4
1

2
,















++

++
+−

−
=

bxcx

bax

b

xw
xxf  

( )

]})1()1[(

)2(){(2,

22212

2122122

xxbaxxx

bxxcwxxxf

−++−

+++−−=
 

 

According to methodology of the 

maximum principle, the system of the conjugate 

equations for additional variables 21,  has the 

next form: 

( ) ( )
2

1

212
1

1

2111 ,,,,








−




−=

x

uxxf

x

uxxf

dt

d
, 

          (22) 

( ) ( )
2

2

212
1

2

2112 ,,,,








−




−=

x

uxxf

x

uxxf

dt

d
, 

where the partial derivatives of functions 

( )uxxfi ,, 21 , i=1, 2 can be calculated by 

formulas (20), (23). 

 

( ) ( )

( )  2/3

1

2

1

2

1

2111

4

4,

bxcx

awx

x

xxf

++

−
=




 

( )
( )22

1

2112 12
,

−−=



x

x

xxf
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( )

( )  2/3

1

2

1

1

2

1

12

1

2121

4

4

4
1

,

bxcx

a

bxcx

bax

b

xw

x

xxf

++

















++

++
+−

−
−=





 

( )
( )

)}1)(2(

]1[)1{(2
,

221

2212

1

2122

−+++

−++−−=




xbxxc

xxbaxx
x

xxf

          (23) 

( )

( ) 













++

++
+−−=





1

2

1

1

2

2111

4
1

1,

bxcx

bax
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xxf
 

 

( )
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1214
,

222

2212

2

2112

−++−−

−+−−−=




xbabxx
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x
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2

1

2

1

1

2

2
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4
1

2
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








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+−−=




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bax
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,

2
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2

2
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2
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x

xxf

+++
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



 

 

The Hamiltonian is expressed by the 

following formula: 
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( ) ( )uxxfuxxfH ,,,, 21222111 +=       (24) 

Substituting (14) in (17) and (18) and doing 

identical transformations we obtain the following 

expression for a Hamiltonian: 

( ) ( )

( )2121

2121221111

,,,

,,





xxu

xxfxxfH

+

+=
        (25) 

where 

  

( ) ( ) ( ) 
( ) ( ) 212121222

2111211212121

,,

,,,,,

xxfxxf

xxfxxfxx

−+

−=




. 

 

According to the maximum principle, we 

obtain the next main condition for the control 

function u: 








=

0,1

0,0
u                      (26) 

 

The behaviour of the control function u(t) 

that corresponds to the maximum principle is 

defined also by behaviour of functions ( )t1  and 

( )t2 , which are computed from the equations 

(22). At the same time the solution of the equations 

(22) depends on initial values 10  and 20 , which 

are defined within the precision of common 

multiplier. One of these constants can be taken 

arbitrary. Let us define the constant 110 −= . The 

value of 20  that corresponds to the adequate 

solution of a task in the conditions of the maximum 

principle can be obtained by iterative procedure. We 

use iterative procedure on the basis of the Newton 

method that provides the solution for the minimum 

time. 

The analysis of optimization process for a 

similar example which is carried out in work [17] 

showed that the TSO (u=0) is optimal one when 

initial values of variables 
1x and 2x , ( 10x , 20x ) 

are positive. At the same time the negative initial 

values of the variable 2x leads to significantly 

other results. In case of negative initial values of 

variable 20x , emergence of effect of acceleration 

of the process of circuit optimization is possible. 

This effect accelerates the optimization process in 

some times. It is interesting to check, whether it is 

possible to obtain similar result on the basis of 

maximum principle. 

Figure 2 shows the trajectory of the process 

of circuit optimization in phase space of two 

variables 
1x , 2x , corresponding to the initial 

point ( 10x =1, 20x =1) that was obtained with a 

main condition of the maximum principle (26). 

 

 
 

Figure 2: Trajectories of optimization process in 

phase space for initial point 
10x =1, 20x =1 

 

In this case the optimum trajectory 

corresponds to TSO and the constant value u=0. 

Thus the number of iterations is equal to 3719 and 

time of the CPU is equal to 20.45 msec. Changing 

of the initial point of S at any other positive values 

of coordinates 
1x , 2x , doesn't lead to change of a 

trajectory. However the negative value of coordinate 

2x  leads to essential change of the solution. The 

trajectories of process of circuit optimization 

corresponding to the initial point ( 10x =1, 20x = -

1) are shown in Figure 3. 

 

 
 

Figure 3: Trajectories of optimization process in 

phase space for initial point 
10x =1, 20x = -1 
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 The structure of function u(t) that was 

obtained automatically and corresponds to a 

condition of the maximum principle (26) has one 

point of a rupture that corresponds to switching from 

the trajectory corresponding to MTSO (u=1, a dotted 

curve) on trajectory corresponding to TSO (u=0, a 

continuous curve). Coordinates of a point of 

switching of tsw depend on value of 20 . The data 

corresponding to points 1, 2, 3, 4, 5, 6 and 7 in Fig. 3 

are presented in Table 1. 

 

Table 1: Data for different initial value 

 

 

Change of the value of 20  from 40.0 till 

14.35 leads to reduction of iterations number and 

CPU time from 19.62 msec to 1.520 msec, but the 

CPU time is increasing later on. That is visible also 

in Figure 4, where the dependence of CPU time of 

the solution of a task from initial value 20  is 

shown. 

 

 
 

Figure 4: CPU time as function of parameter 
20  

 

The value opt20 = 14.35 corresponds to 

the minimum CPU time Tmin and integral J, and is 

the same initial value of variable ( )t2  which, 

according to the maximum principle, provides the 

maximum and constant value of a Hamiltonian of H. 

The gain in time computed as time relation for TSO 

by the minimum time of Tmin thus equal to 13.45 

times. Dependences of the functions ( )t1  and 

( )t2 , and also a Hamiltonian of H(t) are 

presented in Figure 5. 

 

 
 

Figure 5: Dependencies of ( )t1 , ( )t2  and H(t) 

for optimal opt20  

 

Hamiltonian in this case is a constant and 

this fact corresponds to the maximum principle. It is 

interesting to analyze behaviour of these functions 

with a non-optimal point of switching tsw of the 

control function u(t). Dependences of u(t) in change 

of tsw as parameter are presented in Figure 6 and 

Figure 7. 

 

 

 
 

Figure 6: Dependencies of ( )t1 , ( )t2  and H(t) 

for 
20 < opt20  

 

N Iterations Time

 number (msec)

1  40.00 3568  19.620

2  30.00 3383  18.613

3  20.00 2790  15.351

4  16.00 1810    9.962

5  14.35 277    1.520

6  10.00 1152    6.310

7    2.00 1887  10.781

20
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Figure 7: Dependencies of ( )t1 , ( )t2  and H(t) 

for 
20 > opt20  

 

Hamiltonian is changing in time when the 

switching point is differing from the optimal one. 

This criterion can be the basic in practical search of 

the optimal control function. 

The analysis of optimization process of the 

presented circuit showed that application of the 

maximum principle really allows to find optimum 

structure of the control function u(t), by means of 

iterative procedure. Criterion of the end of 

procedure is an invariable value of a Hamiltonian. 

Thus considerable reduction of CPU time in 

comparison with traditional approach is observed. 

 

IV. CONCLUSION 
The task of constructing a time-minimized 

algorithm can be adequately solved on the basis of 

control theory. The design process in this case is 

formulated as a controlled dynamic system.  

Analysis of the application of maximum 

principle to a problem of circuit optimization proves 

that the formerly studied effect of acceleration on 

the process of optimization appears owing to this 

principle. This means that the maximum principle of 

Pontryagin provides a theoretical justification for 

the acceleration effect that appears when we use the 

generalized formulation of process of circuit 

optimization. It is confirmed that the maximum 

principle allows for finding one or several local 

minima of the functional that is defined as the 

processor time. Aside from that, the use of the 

maximum principle provides the chance to 

significantly reduce the computing time for circuit 

optimization. 

  The analysis of optimization process of the 

presented circuit showed that application of the 

maximum principle really allows finding the 

optimum structure of the control vector U by means 

of iterative procedure. The solution to this problem 

allows you to build an algorithm for optimizing the 

system in minimal time. 
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