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ABSTRACT: This paper proposes a novel approach
for seismic signal processing using Whale
Optimization Algorithm-based Variational Mode
Decomposition  (WOA-VMD). The  method
adaptively optimizes key VMD parameters,
including the number of modes and the penalty
factor, to achieve effective mode decomposition and
noise suppression. Experimental results on both
synthetic and real seismic data demonstrate that
WOA-VMD  outperforms conventional time-
frequency analysis methods in terms of mode
separation quality and time-frequency resolution.
The proposed method provides a reliable tool for
high-resolution seismic interpretation and offers
significant potential for applications in hydrocarbon
exploration.
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I. INTRODUCTION

Seismic data serves as a vital source of
information in the exploration of oil and natural gas.
Enhancing the resolution of seismic data represents
a crucial task in seismic signal processing [1,2].
Such data are primarily acquired through seismic
exploration, wherein a series of techniques are
employed to generate seismic waves that provide
essential information for characterizing subsurface
geological structures and locating mineral resources
such as oil and gas [3].Time-frequency analysis
methods are widely used in seismic data processing
and interpretation due to their ability to effectively
reveal how the frequency content of seismic signals
evolves over time. Conventional time-frequency
analysis techniques—including the Short-Time
Fourier Transform (STFT), Wavelet Transform
(WT), and Wigner-Ville Distribution (WVD)—have
been successfully applied in seismic studies, yet
each is constrained by inherent limitations in joint
time-frequency resolution [4,5].

More recently, time-frequency analysis
methods based on Empirical Mode Decomposition
(EMD) have emerged as a promising alternative,
offering higher time-frequency concentration and
adaptability [6]. These methods have shown
practical value in seismic interpretation by
highlighting fine structural features, enhancing
hydrocarbon indicators, and facilitating noise
suppression.  Although EMD can recursively
decompose a multi-component seismic trace into
multiple Intrinsic Mode Functions (IMFs), it still
suffers from notable limitations, such as sensitivity
to noise and sampling, as well as a lack of rigorous
mathematical foundation [7,8].

In this study, the Whale Optimization
Algorithm-based Variational Mode Decomposition
(WOA-VMD) is employed to process seismic
signals. This approach effectively overcomes the
limitations of conventional EMD by incorporating a
variational framework and adaptive parameter
optimization. The WOA algorithm automatically
optimizes two critical VMD parameters—the
number of modes K and the penalty factor o—
ensuring a data-driven and robust decomposition
process. As a result, the WOA-VMD method
achieves superior time-frequency localization,
improves mode separability, and significantly
enhances the signal-to-noise ratio, thereby providing
more reliable support for high-resolution seismic
interpretation.

Il. THEORY

A. Whale Optimization Algorithm

The WOA is a metaheuristic optimization
technique inspired by the foraging behavior of
humpback whales in nature [9]. It simulates the
collective hunting strategies of whales, including
encircling, pursuing, and attacking prey, to perform
global optimization search.The algorithm begins by
randomly generating an initial  population
ofNwhales within the search space. During the
evolutionary process, each whale updates its
position based on either the current best whale or a
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randomly selected individual from the population.
Finally, depending on a randomly generated valuep,
each whale performs either a spiral updating
maneuver or a shrinking encircling action. This
process repeats iteratively until a satisfactory
solution is found.

The position update under the shrinking
encircling mechanism is described by the following
equation:

D=[C-X"(t)- X (t),
X({t+1)=X"(t)-A-D

1)

where t denotes the current iteration
number, X*represents the position vector of the prey,

andA, Care coefficient vectors. The
vectorsAandCare defined as follows:
A=2a-r-a
(2)
C=2r,

wherer; andr,are random vectors uniformly
distributed in [0,1], andais the convergence factor,
which decreases linearly from 2 to 0 over the course
of iterations as follows:

a=2—-——— (3

max

where t.., denotes the maximum number of
iterations.

In the spiral-updating position method, which
simulates the spiral movement of whales as they
approach their prey, the position update is
formulated as follows:

X*(t)-A-D p<05

X+ =
(t+) {D’.eb'-cos(ZﬂI)+X*(t) p>0.5

(4)

where D denotes the distance between thei-
th whale and the prey,bis a constant that defines the
shape of the logarithmic spiral, andlis a random
number uniformly distributed in the interval
[-1,1]1.To simulate this behavior during the
optimization process, the algorithm selects either the
shrinking encircling mechanism or the spiral
updating position with equal probability of 0.5.

B. Variational Mode Decomposition

VMD is an adaptive, non-recursive, and
quasi-orthogonal signal decomposition method that
decomposes a signal into a finite number of sub-

signals, referred to as IMFs[10]. Each IMF is a
band-limited mode with a specific sparsity property,
oscillating around its own center frequency. To
constrain the bandwidth of each IMF within a
targeted frequency range, the decomposition is
achieved by addressing the following constrained
variational problem:

The procedure involves three key steps for
eachIMF:

(1) Compute the unilateral frequency spectrum via
the Hilbert transform;

(2) Shift the frequency band of each mode to
baseband using an exponential tuning term;

(3) Estimate the bandwidth of each IMF by squaring
the L,-norm of the gradient.

Thus, the resulting constrained variational problem
can be formulated as:

0, {(56) + ij*uk (t)} g it
st

st. Yu,=f
k

(®)

2

min 4>

wHod |4

2

where uy, denotes thek-th mode of
thesignal, {u,} represents the set of all
modes {uy,u,, -+, U}, wy stands for the centre
frequency of thek-th mode,{W,}indicates the set of
all centerfrequencies,fis the input signal to be
decomposed, ands(t)refers to the Dirac delta
function.

To transform the constrained variational
problem into an unconstrained one, a quadratic
penalty term and the augmented Lagrangian
function are introduced to optimize the constrained
solution. The corresponding formulation is given as

follows:
0, K&(t) + lj*uk (t)} g it
it

+</1(t), f —Zuk>.

2

L(uk,a)k,/l):az

2

+

f->u,
(6)

where adenotes the balancing parameter of
the data-fidelity constraint.

Subsequently, the Alternating Direction
Method of Multipliers (ADMM) is employed to
iteratively update each IMF component ugand its
corresponding center frequency o, . The update
equations are formulated as follows:
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The center frequencywf*! is updated as follows:

j |G, (a))|2 do

n+l _ Jo

’ _ .
[ 6, (@) do

wherew represents the center of gravity of
the power spectrum of thek-th IMF.

Therefore, each IMF can be regarded as a
monocomponent signal, for which the instantaneous
amplitude and instantaneous frequency can be
calculated using the following expressions:

A®) = JRUD)? + 1 (u(t))?
FO)- 1 RU®)IU) —RU®) 1(u(t)
RU(®)? + 1 (u(t))*

(9)

where A(t)andF(t)denote the instantaneous
amplitude and instantaneous frequency,
respectively; R(-) and I(-) represent the real and
imaginary parts of the analytic signal, andR'andI'are
their respective derivatives with respect to timet.

The performance of the VMD algorithm
depends on several input parameters: the balancing
parameter for the data-fidelity constrainta, the time-
step for the dual ascentr, the number of modes to be
extractedK, the convergence toleranceTol, and the
initialization of the center frequenciesinit. Not all
parameters are elaborated in this paper, as some are
primarily related to the optimization solver
(ADMM); a comprehensive description of these can
be found in Dragomiretskiy & Zosso (2014).

Among these, a andKare the two most
critical parameters in VMD, while the others have
relatively minor influence on the decomposition
results. An excessively large value ofKmay lead to
mode mixing, whereas an insufficientKcan
adversely affect the focus of the time-frequency
representation, thereby hindering the accurate
capture of each mode’s center frequency.
Meanwhile, the parameteracontrols the data fidelity
constraint. An inappropriate choice of a may
compromise the preservation of modal components.
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Figure 1 Synthetic signal

1. EXPERIMENT

In this section, we first compare different
decomposition levels of VMD using synthetic data
to investigate the impact of an inappropriate
selection of the decomposition level on the results.
Subsequently, real seismic data are employed to
determine the optimal parameters, followed by a
time-frequency analysis.

Figure 2 VMD result of the synthetic data. The
decomposition level is set to 2.

Figure 3 VMD result of the synthetic data. The
decomposition level is set to 3.
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Figure 4 VMD result of the synthetic data. The
decomposition level is set to 4.

The synthetic signal shown in Figure 1
consists of an initial 30 Hz cosine wave,
superimposed with an 80 Hz Ricker wavelet at 0.1 s,
a 60 Hz Ricker wavelet at 0.3 s, and two additional
30 Hz Ricker wavelets located at 0.49 s and 0.51 s.

Figure 5 Time domain waveform of a single seismic
trace.

Figures 2 to 4 present the decomposition
results of the synthetic signal using different
decomposition levels of the VMD method. Among
these, the most appropriate decomposition level is 3,
as illustrated in Figure 3. In this case, the
background cosine wave is primarily captured in
IMF1, while IMF2 mainly contains the high-
frequency Ricker wavelets, specifically reflecting
the 80 Hz wavelet at 0.1 s and the 60 Hz wavelet at
0.3 s. IMF3 accurately represents the two low-
frequency 30 Hz Ricker wavelets located at 0.49 s
and 051 s. In contrast, the result with a
decomposition level of 2 (Figure 2) fails to
effectively separate the high- and low-frequency
Ricker wavelets, leading to mode mixing and
aliasing of signal components, which adversely
affects subsequent processing. On the other hand,
the over-decomposition observed in Figure 4 (using
a higher decomposition level) not only demands
greater computational resources and time but also
introduces information redundancy. Specifically,

IMF2 and IMF4 contain repetitive and overlapping
information, which undermines the efficiency and
clarity of signal analysis and interpretation.

Figure 6 WOA optimization results for VMD
parameters.

A real seismic trace is extracted, as
depicted in Figure 5. The WOA is employed to
optimize two critical parameters of the VMD
method: the number of modesKand the penalty
factora. The optimal parameter values obtained are
[K,a]=[3,1500]. The iterative optimization process
is illustrated in Figure 6, and the corresponding
decomposition results are shown in Figure 7. It can
be observed that the random noise is predominantly
captured in IMF3, enabling effective noise removal
while preserving valuable stratigraphic information.

. WMMW@- sl

Figure 7 Decomposition results of VMD for a single
seismic trace.

Subsequently, the time-frequency
representation of the seismic trace obtained through
WOA-VMD is compared with that derived from the
STFT, as shown in Figure 8. The results
demonstrate that the time-frequency distribution
provided by WOA-VMD allows for more precise
localization of spectral anomalies, thereby
facilitating further interpretation.
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Figure 8 Time-frequency representation of a single-
channel seismic signal(a. STFT b.WOA-VMD)

IV. INTRODUCTION

This study demonstrates that the WOA-
optimized VMD method effectively enhances
seismic signal decomposition by adaptively
determining the optimal mode number and penalty
factor. The approach outperforms conventional
techniques in  mode separation and noise
suppression, providing superior time-frequency
localization for improved interpretation.

The proposed method offers a more robust
and adaptive alternative to traditional EMD and
other time-frequency analyses, showing significant
potential for high-resolution seismic processing.
Future work will focus on extending its application
to 3D seismic data and optimizing computational
efficiency for practical implementation.
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