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ABSTRACT: This paper proposes a novel approach 

for seismic signal processing using Whale 

Optimization Algorithm-based Variational Mode 

Decomposition (WOA-VMD). The method 

adaptively optimizes key VMD parameters, 

including the number of modes and the penalty 

factor, to achieve effective mode decomposition and 

noise suppression. Experimental results on both 

synthetic and real seismic data demonstrate that 

WOA-VMD outperforms conventional time-

frequency analysis methods in terms of mode 

separation quality and time-frequency resolution. 

The proposed method provides a reliable tool for 

high-resolution seismic interpretation and offers 

significant potential for applications in hydrocarbon 

exploration. 
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I. INTRODUCTION 
Seismic data serves as a vital source of 

information in the exploration of oil and natural gas. 

Enhancing the resolution of seismic data represents 

a crucial task in seismic signal processing [1,2]. 

Such data are primarily acquired through seismic 

exploration, wherein a series of techniques are 

employed to generate seismic waves that provide 

essential information for characterizing subsurface 

geological structures and locating mineral resources 

such as oil and gas [3].Time-frequency analysis 

methods are widely used in seismic data processing 

and interpretation due to their ability to effectively 

reveal how the frequency content of seismic signals 

evolves over time. Conventional time-frequency 

analysis techniques—including the Short-Time 

Fourier Transform (STFT), Wavelet Transform 

(WT), and Wigner-Ville Distribution (WVD)—have 

been successfully applied in seismic studies, yet 

each is constrained by inherent limitations in joint 

time-frequency resolution [4,5]. 

More recently, time-frequency analysis 

methods based on Empirical Mode Decomposition 

(EMD) have emerged as a promising alternative, 

offering higher time-frequency concentration and 

adaptability [6]. These methods have shown 

practical value in seismic interpretation by 

highlighting fine structural features, enhancing 

hydrocarbon indicators, and facilitating noise 

suppression. Although EMD can recursively 

decompose a multi-component seismic trace into 

multiple Intrinsic Mode Functions (IMFs), it still 

suffers from notable limitations, such as sensitivity 

to noise and sampling, as well as a lack of rigorous 

mathematical foundation [7,8]. 

In this study, the Whale Optimization 

Algorithm-based Variational Mode Decomposition 

(WOA-VMD) is employed to process seismic 

signals. This approach effectively overcomes the 

limitations of conventional EMD by incorporating a 

variational framework and adaptive parameter 

optimization. The WOA algorithm automatically 

optimizes two critical VMD parameters—the 

number of modes K and the penalty factor α—

ensuring a data-driven and robust decomposition 

process. As a result, the WOA-VMD method 

achieves superior time-frequency localization, 

improves mode separability, and significantly 

enhances the signal-to-noise ratio, thereby providing 

more reliable support for high-resolution seismic 

interpretation. 

 

II. THEORY 
A. Whale Optimization Algorithm 

The WOA is a metaheuristic optimization 

technique inspired by the foraging behavior of 

humpback whales in nature [9]. It simulates the 

collective hunting strategies of whales, including 

encircling, pursuing, and attacking prey, to perform 

global optimization search.The algorithm begins by 

randomly generating an initial population 

ofNwhales within the search space. During the 

evolutionary process, each whale updates its 

position based on either the current best whale or a 
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randomly selected individual from the population. 

Finally, depending on a randomly generated valuep, 

each whale performs either a spiral updating 

maneuver or a shrinking encircling action. This 

process repeats iteratively until a satisfactory 

solution is found. 

The position update under the shrinking 

encircling mechanism is described by the following 

equation: 

 

*

*

( ) ( )

( 1) ( )

D C X t X t

X t X t A D

  

   
 (1) 

 

where t denotes the current iteration 

number, X∗represents the position vector of the prey, 

andA, Care coefficient vectors. The 

vectorsAandCare defined as follows: 
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wherer1andr2are random vectors uniformly 

distributed in [0,1], andais the convergence factor, 

which decreases linearly from 2 to 0 over the course 

of iterations as follows: 
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where tmax denotes the maximum number of 

iterations. 

In the spiral-updating position method, which 

simulates the spiral movement of whales as they 

approach their prey, the position update is 

formulated as follows: 
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where D denotes the distance between thei-

th whale and the prey,bis a constant that defines the 

shape of the logarithmic spiral, andlis a random 

number uniformly distributed in the interval 

[−1,1].To simulate this behavior during the 

optimization process, the algorithm selects either the 

shrinking encircling mechanism or the spiral 

updating position with equal probability of 0.5. 

 

B. Variational Mode Decomposition 

VMD is an adaptive, non-recursive, and 

quasi-orthogonal signal decomposition method that 

decomposes a signal into a finite number of sub-

signals, referred to as IMFs[10]. Each IMF is a 

band-limited mode with a specific sparsity property, 

oscillating around its own center frequency. To 

constrain the bandwidth of each IMF within a 

targeted frequency range, the decomposition is 

achieved by addressing the following constrained 

variational problem: 

 

The procedure involves three key steps for 

eachIMF: 

(1) Compute the unilateral frequency spectrum via 

the Hilbert transform; 

(2) Shift the frequency band of each mode to 

baseband using an exponential tuning term; 

(3) Estimate the bandwidth of each IMF by squaring 

the L2-norm of the gradient. 

Thus, the resulting constrained variational problem 

can be formulated as: 
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where uk denotes thek-th mode of 

thesignal, {uk} represents the set of all 

modes {u1, u2, ⋯ , uk} , ωk stands for the centre 

frequency of thek-th mode,{Wk }indicates the set of 

all centerfrequencies,fis the input signal to be 

decomposed, andδ(t)refers to the Dirac delta 

function. 

To transform the constrained variational 

problem into an unconstrained one, a quadratic 

penalty term and the augmented Lagrangian 

function are introduced to optimize the constrained 

solution. The corresponding formulation is given as 

follows: 
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where αdenotes the balancing parameter of 

the data-fidelity constraint. 

Subsequently, the Alternating Direction 

Method of Multipliers (ADMM) is employed to 

iteratively update each IMF component  uk and its 

corresponding center frequency ωk . The update 

equations are formulated as follows: 
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The center frequencyωk
n+1 is updated as follows: 
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whereωkrepresents the center of gravity of 

the power spectrum of thek-th IMF. 

Therefore, each IMF can be regarded as a 

monocomponent signal, for which the instantaneous 

amplitude and instantaneous frequency can be 

calculated using the following expressions: 
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where A t andF t denote the instantaneous 

amplitude and instantaneous frequency, 

respectively; R ⋅ and I ⋅ represent the real and 

imaginary parts of the analytic signal, andR′andI′are 

their respective derivatives with respect to timet. 

The performance of the VMD algorithm 

depends on several input parameters: the balancing 

parameter for the data-fidelity constraintα, the time-

step for the dual ascentτ, the number of modes to be 

extractedK, the convergence toleranceTol, and the 

initialization of the center frequenciesInit. Not all 

parameters are elaborated in this paper, as some are 

primarily related to the optimization solver 

(ADMM); a comprehensive description of these can 

be found in Dragomiretskiy & Zosso (2014). 

Among these, α  andKare the two most 

critical parameters in VMD, while the others have 

relatively minor influence on the decomposition 

results. An excessively large value ofKmay lead to 

mode mixing, whereas an insufficientKcan 

adversely affect the focus of the time-frequency 

representation, thereby hindering the accurate 

capture of each mode’s center frequency. 

Meanwhile, the parameterαcontrols the data fidelity 

constraint. An inappropriate choice of α  may 

compromise the preservation of modal components. 

 
Figure 1 Synthetic signal 

 

III. EXPERIMENT 
In this section, we first compare different 

decomposition levels of VMD using synthetic data 

to investigate the impact of an inappropriate 

selection of the decomposition level on the results. 

Subsequently, real seismic data are employed to 

determine the optimal parameters, followed by a 

time-frequency analysis. 

 
Figure 2 VMD result of the synthetic data. The 

decomposition level is set to 2. 

 

 
Figure 3 VMD result of the synthetic data. The 

decomposition level is set to 3. 
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Figure 4 VMD result of the synthetic data. The 

decomposition level is set to 4. 

 

The synthetic signal shown in Figure 1 

consists of an initial 30 Hz cosine wave, 

superimposed with an 80 Hz Ricker wavelet at 0.1 s, 

a 60 Hz Ricker wavelet at 0.3 s, and two additional 

30 Hz Ricker wavelets located at 0.49 s and 0.51 s. 

 

 
Figure 5 Time domain waveform of a single seismic 

trace. 

 

Figures 2 to 4 present the decomposition 

results of the synthetic signal using different 

decomposition levels of the VMD method. Among 

these, the most appropriate decomposition level is 3, 

as illustrated in Figure 3. In this case, the 

background cosine wave is primarily captured in 

IMF1, while IMF2 mainly contains the high-

frequency Ricker wavelets, specifically reflecting 

the 80 Hz wavelet at 0.1 s and the 60 Hz wavelet at 

0.3 s. IMF3 accurately represents the two low-

frequency 30 Hz Ricker wavelets located at 0.49 s 

and 0.51 s. In contrast, the result with a 

decomposition level of 2 (Figure 2) fails to 

effectively separate the high- and low-frequency 

Ricker wavelets, leading to mode mixing and 

aliasing of signal components, which adversely 

affects subsequent processing. On the other hand, 

the over-decomposition observed in Figure 4 (using 

a higher decomposition level) not only demands 

greater computational resources and time but also 

introduces information redundancy. Specifically, 

IMF2 and IMF4 contain repetitive and overlapping 

information, which undermines the efficiency and 

clarity of signal analysis and interpretation. 

 
Figure 6 WOA optimization results for VMD 

parameters. 

A real seismic trace is extracted, as 

depicted in Figure 5. The WOA is employed to 

optimize two critical parameters of the VMD 

method: the number of modesKand the penalty 

factorα. The optimal parameter values obtained are 

[K,α]=[3,1500]. The iterative optimization process 

is illustrated in Figure 6, and the corresponding 

decomposition results are shown in Figure 7. It can 

be observed that the random noise is predominantly 

captured in IMF3, enabling effective noise removal 

while preserving valuable stratigraphic information. 

 

 
Figure 7 Decomposition results of VMD for a single 

seismic trace. 

 

Subsequently, the time-frequency 

representation of the seismic trace obtained through 

WOA-VMD is compared with that derived from the 

STFT, as shown in Figure 8. The results 

demonstrate that the time-frequency distribution 

provided by WOA-VMD allows for more precise 

localization of spectral anomalies, thereby 

facilitating further interpretation. 
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Figure 8 Time-frequency representation of a single-

channel seismic signal(a. STFT b.WOA-VMD) 

 

IV. INTRODUCTION 
This study demonstrates that the WOA-

optimized VMD method effectively enhances 

seismic signal decomposition by adaptively 

determining the optimal mode number and penalty 

factor. The approach outperforms conventional 

techniques in mode separation and noise 

suppression, providing superior time-frequency 

localization for improved interpretation. 

The proposed method offers a more robust 

and adaptive alternative to traditional EMD and 

other time-frequency analyses, showing significant 

potential for high-resolution seismic processing. 

Future work will focus on extending its application 

to 3D seismic data and optimizing computational 

efficiency for practical implementation. 
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