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ABSTRACT: To ensure minimization of power 

losses as well as economic feasibility of electrical 

power generation, economic load dispatch happens 

to be one of the most challenging optimization 

problems which is faced in electrical engineering. 

With the advent of distributed power systems, an 

interconnection of power systems generating from 

different sources have come into consideration. 

However, all sources do not operate in the same 

manner and hence the generation cost for different 

sources varies significantly. Economic Load 

Dispatch (ELD) can be defined as a technique to 

schedule the power generator outputs with respect 

to the load demands, and to operate the power 

system in the most economical way. This paper 

presents a neural network model for implementing 

economic load dispatch for a three as well as six 

generation system. The load is also varied for both 

the 3 and 6 generations systems. The results clearly 

indicate that the cost of generation increases with 

the increase in load, which is also intuitive and 

hence gets tested. Thus the proposed model can be 

used to implement an optimized economic load 

dispatch mechanism for multi-unit power systems 

which is a typical characteristic of distributed 

power systems. 

Keywords: Power Systems, Loss Minimization, 

Economic Load Dispatch, Optimization 

Techniques, Neural Networks. 

 

I. INTRODUCTION: 
Loss minimization and economic load 

dispatch (ELD) are two critical aspects of power 

system operation, particularly in interconnected 

systems. In an interconnected power system, 

multiple power generation units, often located in 

different regions, work together to meet the 

electricity demand [1]. The goal of these systems is 

to supply power efficiently, reliably, and at the 

lowest possible cost while minimizing transmission 

losses. Achieving optimal economic load dispatch 

and loss minimization ensures that electricity is 

delivered sustainably and economically.Power 

losses in transmission lines are an inevitable part of 

power delivery due to the resistance and reactance 

of conductors. In large interconnected systems, 

these losses can be significant, reducing overall 

efficiency [2]. 

 

 
Fig.1 An interconnected power system 

 

Figure 1 depicts and interconnected power 

system, wherein multiple sources can be connected 

to a grid to contributed energy.Loss minimization 

aims to reduce these losses, which are typically 

categorized into two types: real power losses (I²R 

losses) and reactive power losses. Various 

methods, such as reactive power compensation, 

optimal power flow (OPF) algorithms, and network 

reconfiguration, can be employed to minimize 

losses [3]. Reducing transmission losses not only 

improves system efficiency but also supports the 

objectives of economic load dispatch, as fewer 

losses translate into lower generation costs [4]. 
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II. LOSS MINIMIZATION AND 

ECONOMIC LOAD DISPATCH 
In an interconnected power system, the 

ELD problem becomes more complex due to the 

multiple areas involved. Each area may have its 

own generation units, constraints, and load 

demands. Interconnections between areas allow for 

the sharing of resources, which can lead to cost 

savings. Power can be transferred from regions 

with surplus generation to regions with deficits, 

thereby optimizing the overall system operation 

[5]. However, this necessitates coordination among 

the areas to achieve both economic efficiency and 

reliability. Advanced computational techniques, 

such as linear programming, dynamic 

programming, and heuristic methods, are 

commonly used to solve the ELD problem in 

interconnected systems [6]. 

 
Fig.2 Typical variation of cost of generation 

with generation magnitude 

 

Figure 2 depicts the typical variation of 

cost of generation with generation magnitude 

interconnected power systems face several 

challenges in achieving loss minimization and 

economic load dispatch. These challenges include 

variations in fuel costs, fluctuating demand 

patterns, transmission constraints, and the need for 

real-time adjustments due to unforeseen outages or 

failures. Moreover, with the growing integration of 

renewable energy sources, which are intermittent 

and less predictable, the complexity of managing 

the economic dispatch process increases. Effective 

coordination between different regions, along with 

accurate forecasting and advanced control 

techniques, is essential to address these challenges 

[7]. 

By optimizing power generation and reducing 

transmission losses, utilities can ensure a reliable 

supply of electricity at the lowest possible cost. 

With the use of advanced optimization techniques 

and a focus on real-time system control, 

interconnected power systems can better handle the 

growing complexity and dynamic nature of modern 

electricity grids, contributing to both economic 

efficiency and environmental sustainability [8]. 

 

III. MATHEMATICAL FORMULATION 

FOR LOSS MINIMIZATION AND ELD: 
This section presents the mathematical 

model for optimized loss minimization. Consider n 

generators in the same plant or close enough 

electrically so that the line losses may be neglected 

[9]. Let C1, C2, …, Cn be the operating costs of 

individual units for the corresponding power 

outputs P1, P2,.,Pn respectively. If C is the total 

operating cost of the entire system and PR is the 

total power received by the plant bus and 

transferred to the load.Consider the objective 

function [10]:  

 

𝐂 =  𝐂𝐢 𝐏𝐆𝐢
 𝐧

𝐢=𝟏                               (1) 

 

One needs to minimize the above function subject 

to the equality and inequality constraints. 

Equality constraints: The real-power balance 

equation, i.e., total real-power generations minus 

the total losses should be equal to real-power 

demand [11]: 

𝐏𝐆𝐢
− 𝐏𝐋 = 𝐏𝐃       (2) 

 

Here, 

PG i
 denotes power generated by generation unit „i‟. 

PD  denotes dispatched power. 

 

Inequality constraints:The inequality constraints 

are represented as: 

1. In terms of real-power generation as 

PGi (min) ≤ PGi ≤ PGi(max) 

  

2. In terms of reactive-power generation as 

QGi (min) ≤ QGi ≤ QGi(max) 

  

3. In addition, the voltage at each of the 

stations should be maintained within certain limits. 

i.e., Vi(min) ≤ Vi ≤ Vi(max) 

Current distribution factor of a transmission line 

w.r.t a power source is the ratio of the current it 

would carry to the current that the source would 

carry when all other sources are rendered inactive 

i.e., the sources that do not supply any current. 

If the system has „n‟ number of stations, supplying 

the total load through transmission lines, the 

transmission line loss is given by [12]: 
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𝐏𝐋 =   𝐏𝐆𝐩𝐁𝐩𝐪𝐏𝐆𝐪
𝐧
𝐪=𝟏

𝐧
𝐩=𝟏            (3) 

 

The coefficient Bare called loss coefficients or B-

coefficients and are expressed in (MW)
−1

. The 

transmission loss is expressed as a function of real-

power generations. 

The incremental transmission loss is expressed 

as 
𝛛𝐏𝐋

𝛛𝐆
[13]. 

The penalty factor of any unit is defined as the ratio 

of a small change in power at that unit to the small 

change in received power when only that unit 

supplies this small change in received power and is 

expressed as [14]: 

 

 
The condition for optimality when transmission 

losses are considered is  

 
To optimize the cost function, several approaches 

have been employed thus far. 

 

IV. THE NEURAL NETWORK MODEL 

FOR OPTIMIZATION 
Several methods are employed for both 

loss minimization and ELD. Classical methods like 

the Newton-Raphson method, gradient-based 

techniques, and linear programming have been 

widely used. However, with the growing 

complexity of power systems and the need for 

more precise solutions, modern optimization 

techniques such as genetic algorithms (GA), 

particle swarm optimization (PSO), and artificial 

neural networks (ANNs) are now being utilized. 

These methods can handle non-linearities, 

constraints, and uncertainties more effectively, 

offering better results in terms of cost savings and 

loss reduction. The neural network model (with 

deep neural networks) has proven to be one of the 

most effective optimization techniques off late. 

This is the primary reason why the neural network 

model has been chosen in this research workThe 

unit wise generation is modelled as follows [15]: 

 
Fig.3. Model for Power Generation System with 

Multiple Sources 

 

Considering the total cost of generation to be the 

sum of individual costs of generations of the 

generators, we get [16]: 

𝐆𝐂𝐭𝐨𝐭 =   𝐤𝟏𝐏𝐠𝐢
𝐦 + 𝐤𝟐𝐏𝐠𝐢

𝐦−𝟏 + ⋯ . +𝐤𝐦
𝐧
𝐢=𝟏 (4) 

Here, 

k1, k2….. km are the constants 

Pgi  is the individual power generated by a generator  

GCtot  is the total cost of generation  

The aim of employing the neural network is to 

minimize the cost function by optimizing the 

generation of each generator [17]: 

The output of the neural network is given by: 

 

𝐲 = 𝐟( 𝐗𝐢𝐖𝐢  +    Ɵ)𝐧
𝐢=𝟏           (5)     

 

Where, 

 Xi represents the signals arriving through various 

paths,  

Wi represents the weight corresponding to the 

various paths and  

Ɵ is the bias. It can be seen that various 

signals traverssing different paths have been 

assigned names X and each path has been assigned 

a weight W. The signal traverssing a particular path 

gets multiplied by a corresponding weight W and 

finally the overall summation of the signals 

multiplied by the corresponding path weights 

reaches the neuron which reacts to it according to 

the bias Ɵ. Finally its the bias that decides the 

activation function that is responsiblefor the 

decision taken upon by the neuralnetwork. The 

activation function φ is used to decide upona the 

final output. The neural network model is presented 

next [18]: 
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Fig.4 Mathematical Model of Neural Network 

 

The learning capability of the ANN structure is 

based on the temporal learning capability governed 

by the relation: 

 

𝐰 𝐢 = 𝐟(𝐢, 𝐞)(6) 

Here, 

w (i) represents the instantaneous weights 

i is the iteration 

e is the prediction error 

 

The weight changes dynamically and is given by: 

  𝐖𝐤

𝐞,𝐢
 𝐖𝐤+𝟏(7) 

Here, 

Wk  is the weight of the current iteration. 

Wk+1 is the weight of the subsequent iteration. 

 

(i) Regression Learning Model 

Regression learning has found several 

applications in supervized learning algorithms 

where the regression analysis among dependednt 

and independent variables is eeded. Different 

regression models differ based on the the kind of 

relationship between dependent and independent 

variables, they are considering and the number of 

independent variables being used. Regression 

performs the task to predict a dependent variable 

value (y) based on a given independent variable 

(x). So, this regression technique finds out a 

relationship between x (input) and y(output). 

Mathematically, 

𝐲 = 𝛉𝟏 + 𝛉𝟐𝐱(8) 

Here, 

x represenst the state vector of inut variables  

y rperesenst the state vector of output variable or 

variables. 

Ɵ1 and Ɵ2 are the co-efficents which try to fit the 

regression learning models output vector to the 

input vector.  

 

By achieving the best-fit regression line, 

the model aims to predict y value such that the 

error difference between predicted value and true 

value is minimum. So, it is very important to 

update the θ1 and θ2 values, to reach the best value 

that minimize the error between predicted y value 

(pred) and true y value (y). The cost function J is 

mathematically defined as [19]: 

 

𝐉 =
𝟏

𝐧
 (𝐩𝐫𝐞𝐝𝟏 − 𝐲𝐢)

𝟐𝐧
𝐢=𝟏 (9) 

Here, 

n is the number of samples 

y is the target 

pred is the actual output. 

 

(ii) Gradient Descent  

To update θ1 and θ2 values in order to 

reduce Cost function (minimizing MSE value) and 

achieving the best fit line the model uses Gradient 

Descent. The idea is to start with random θ1 and θ2 

values and then iteratively updating the values, 

reaching minimum cost. The main aim is to 

minimize the cost function J.The critical aspect 

about steepest descent is the fact that it repeatedly 

feeds the errors in every iteration to the network till 

the errors become constant or the maximum 

number of allowable iterations are over. This can 

be mathematically given by: 

if PF ≠ constant 
for (k = 1, k ≤ kmax = constant, k = k + 1) 

{ 

Wk+1 = f(Xk , Wk , ek ) 

}                                               

else 

{ 

Wk+1 = Wk&& training stops 

} 

Here, 

Xk  is the input to the kth iteration  

Wk  is the weight to the kth iteration 

Wk+1 is the weight to the (k+1)st iteration 

ek  is the error to the kth iteration 

k is the iteration number 

PF is the performance function deciding the end of 

training 

kmax  is the maximum number of iterations  

 

Thus if the error is within tolerance, which 

is generally not feasible to find beforehand in time 

series data, the training is stopped if the 

performance function (which can be the training 

error) becomes constant for multiple iterations or 

the maximum number of iterations are over. Now 

there are various ways in which the error can be 
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minimized. However, the steepest fall of the error 

with respect to weights is envisaged. It is depicted 

in the figure below: 

 

 
 

Fig.5. The concept of Steepest Descent 

 

It can be seen from figure 5 that although 

the error in training keeps plummeting in all the 

three cases of gradient descent, the gradient 3 or g3 

attains the maximum negative descent resulting in 

the quickest training among all the approaches and 

hence the least time complexity. This would be 

inferred from the number of iterations which are 

required to stop training. Thus the number of 

iterations would be a function of the gradient with 

which the error falls. 

This is mathematically given by: 

 

𝐤𝐧 = 𝐟(𝐠 =
𝛛𝐞

𝛛𝐰
)(10) 

Here, 

kn  is the number of iterations to stop training. 

g is the gradient 

w is the weight 

e is the error 

f stands for a function of 

 

The proposed methodology uses two key 

components one of which is the training algorithm 

and the other is the training optimization algorithm. 

The weight update can give represented as: 

 

𝐰𝐤+𝟏 = 𝐰𝐤 − 𝛍𝐤
𝛛𝐞

𝛛𝐰𝐤
(11)                

Here, 

wk+1 is the weight of the next iteration 

wk  is the weight of the present iteration 

μk  is the combination co-efficient 

 

 

 

IV. EXPERIMENTAL RESULTS 
The experimental results are simulated on 

MATLAB. Both 3 and 6 unit systems have been 

simulated for variable load scenarios. 

The upper bounds for the 3 unit system are 

considered as: 

20 < P1 < 150 

20 < P2 < 150 

20 < P3 < 150 
 

The upper bounds for the 6 unit system are 

considered as: 

30 < P1 < 200 

45 < P2 < 250 

30 < P3 < 200 

40 < P4 < 200 

45 < P5 < 250 

40 < P6 < 200 

 

The neural network model is simulated next: 

 
Fig.6. Training of Neural Network Model 

Figure 6 depicts the training function for the neural 

network model. 
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Fig.7. Training Convergence 

 

Figure 7 depicts the training convergence of the 

model. 

 
Fig.8. Variation in Cost of Generation (3 unit 

system) 

 

Figure 8 depicts the variation in cost of generation 

of 3 unit system. 

 

 
Fig.9. Variation in Cost of Generation (6 unit 

system) 

 

Figure 9 depicts the variation in cost of generation 

for 6 unit system. 

It can observed that the cost of generation 

increases with  generational capacity magnitude. 

By learning the relationships between these 

variables, a neural network can suggest optimal 

configurations that reduce real power losses. 

Additionally, neural networks can be integrated 

into optimal power flow (OPF) algorithms, which 

aim to minimize both losses and generation costs 

simultaneously, by adjusting generation levels and 

power flows across the network. 

 

CONCLUSION: 
This paper presents aneural network 

approach for implement the economic load 

dispatch for a multi unit system.The major 

advantage of using neural networks for ELD and 

loss minimization is their ability to handle non-

linearity and uncertainties. Power systems are 

inherently non-linear due to the varying nature of 

loads, transmission line characteristics, and 

generation units. Neural networks, being non-linear 

models, can capture these complexities more 

accurately than traditional linear or gradient-based 

methods. Additionally, neural networks can be 

retrained with new data to adapt to changing 

conditions, making them highly flexible. This 

makes them suitable for real-time applications, 

where system conditions change dynamically, 

requiring fast and accurate decision-making.Two 

cases of 3 and 6 unit systems have been simulated 

with specified upper and lower bounds and it can 

be observed that the neural network model attains 
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fast convergence and low mean squared error value 

of 13.15 at convergence at 17 iterations. 
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