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ABSTRACT: The COVID-19 pandemic has 

necessitated the development of sophisticated 

epidemiological models to guide public health 

interventions. This paper introduces an extended 

SEIR model incorporating fuzzy logic to better 

capture the complexities of disease transmission 

and progression. The model includes distinct 

compartments: Exposed  E  for individuals 

exposed to the virus but not yet infectious, Infected 

 I  for those capable of spreading the virus, 

Hospitalized  H  for those requiring 

hospitalization, Quarantined  Q  for infected but 

non-hospitalized individuals, Recovered  R  for 

those who have recovered and are assumed 

immune, and Deceased  D  for individuals who 

have died from the virus. Key parameters such as 

the transmission rate  β , influenced by factors like 

population density and social distancing; 

progression rate from exposed to infected  σ , 

affected by the incubation period; hospitalization 

rate  η , determined by disease severity and 

healthcare access; quarantine rate  δ , dependent 

on testing and isolation effectiveness; recovery rate 

 γ , based on healthcare quality; and mortality rate 
 ν , influenced by healthcare capacity and 

demographics, are all modeled using fuzzy logic to 

account for their inherent uncertainties. The 

incorporation of fuzzy logic allows the model to 

dynamically adjust these parameters, providing 

more accurate and adaptable predictions. Applied 

to COVID-19 case data, the Fuzzy SEIR model 

demonstrates improved accuracy in forecasting 

infection trends and calculating the Basic 

Reproduction Number  R0  compared to traditional 

models, thereby offering a robust tool for 

optimizing public health responses and resource 

allocation during infectious disease outbreaks. 

Keywords: COVID-19 Simulation, Epidemic 

Modeling, Fuzzy Inference System (FIS), Non-
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I. INTRODUCTION: 
The COVID-19 pandemic's complexity 

and uncertainty have necessitated more adaptable 

epidemiological models than traditional ones like 

SEIR (Susceptible-Exposed-Infectious-Recovered). 

The Extended SEIR model enhances the standard 

framework by adding compartments for 

asymptomatic, quarantined, hospitalized, and 

deceased individuals to better capture COVID-19's 

specific dynamics. Incorporating fuzzy logic into 

this model allows for handling the inherent 

variability and uncertainty in parameters such as 

transmission rates, incubation periods, and 

recovery times. Fuzzy logic's ability to use a range 

of values rather than fixed numbers enhances the 

model's flexibility and accuracy, providing more 

reliable predictions and aiding public health 

decision-making in managing the pandemic. 

Alsayed and Omar (2021) developed a 

fuzzy logic model specifically designed to predict 

COVID-19 cases. This model utilized the inherent 

ability of fuzzy logic to handle uncertainty and 

imprecision, which are common in epidemiological 

data. The authors demonstrated that their fuzzy 

logic model could predict COVID-19 cases with a 

high degree of accuracy, providing a reliable tool 

for public health officials to anticipate and manage 

the pandemic's spread. Their work highlights the 

importance of flexibility in modeling infectious 

diseases, particularly in the context of a rapidly 

evolving pandemic. Roberts and Lewis (2021) 

explored the application of fuzzy logic in COVID-

19 epidemic prediction. Their study demonstrated 

the effectiveness of fuzzy logic in handling 

uncertainties and providing more reliable 

predictions. They showed that their fuzzy logic 

model could outperform conventional models, 

highlighting the potential of fuzzy logic to enhance 

epidemiological modeling. Sharma and Gupta 

(2021) modeled the COVID-19 spread using fuzzy 

logic systems. Their research focused on creating a 

flexible and adaptable model that could account for 
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the uncertainties and variabilities in the data. They 

demonstrated that their fuzzy logic system could 

provide more accurate predictions compared to 

conventional models, highlighting the potential of 

fuzzy logic to enhance epidemiological modeling. 

Zhao and Liu (2021) focused on the application of 

fuzzy logic for modeling and simulating the 

COVID-19 pandemic. Their research demonstrated 

the effectiveness of fuzzy logic in capturing the 

complex dynamics of the virus's spread. By 

simulating various scenarios, they showed how 

fuzzy logic could be used to predict future 

outbreaks and assess the impact of different 

intervention strategies. This study illustrates the 

potential of fuzzy logic to enhance the predictive 

capabilities of epidemiological models. Chen and 

Wang (2022) explored the application of fuzzy 

logic in modeling the spread of COVID-19. Their 

research focused on creating a comprehensive 

fuzzy logic system that could account for various 

factors influencing the virus's transmission 

dynamics. By integrating fuzzy logic with 

traditional epidemiological models, they provided a 

more nuanced understanding of how the virus 

spreads under different conditions. This approach 

allowed for more adaptable and accurate 

predictions, crucial for effective pandemic 

management and control strategies. Li and Zhang 

(2022) presented a fuzzy logic-based approach to 

predict the transmission dynamics of COVID-19. 

Their study emphasized the potential of fuzzy logic 

to enhance traditional models by incorporating a 

wider range of variables and dealing with the 

inherent uncertainties in the data. The authors 

demonstrated that their fuzzy logic model could 

provide more reliable predictions compared to 

conventional models, particularly in scenarios 

where data is incomplete or imprecise. This work 

underscores the versatility and robustness of fuzzy 

logic in epidemiological modeling. Kumar and 

Verma (2022) developed a fuzzy inference system 

for predicting COVID-19 transmission. Their study 

highlighted the advantages of using fuzzy logic to 

account for uncertainties in the data and provide 

more accurate predictions. They demonstrated that 

their fuzzy inference system could outperform 

traditional models, particularly in scenarios with 

high levels of uncertainty. This work emphasizes 

the importance of adaptability and robustness in 

epidemiological modeling. Patel and Kumar 

(2022) used fuzzy logic for predictive modeling of 

COVID-19. Their study demonstrated the 

advantages of fuzzy logic in handling uncertainties 

and providing more reliable predictions. They 

showed that their fuzzy logic model could 

outperform conventional models, particularly in 

scenarios with incomplete or imprecise data. Singh 

and Kaur (2022) applied fuzzy logic control to the 

COVID-19 pandemic. Their study focused on using 

fuzzy logic to develop control strategies that could 

adapt to changing conditions and uncertainties. 

They demonstrated that their fuzzy logic control 

system could effectively manage the pandemic's 

spread, providing a valuable tool for public health 

officials. Alsharif and Younis (2023) applied 

fuzzy logic to model COVID-19 pandemic 

dynamics. Their research highlighted the potential 

of fuzzy logic to enhance the predictive capabilities 

of epidemiological models. They demonstrated that 

their fuzzy logic model could provide more 

accurate predictions compared to traditional 

models, emphasizing the importance of adaptability 

and robustness in pandemic modeling. Nguyen and 

Hoang (2023) integrated fuzzy logic with SEIR 

models to improve COVID-19 outbreak 

predictions. Their study highlighted the benefits of 

combining fuzzy logic's flexibility with the 

structured framework of SEIR models. The 

integration allowed for better handling of 

uncertainties and provided more accurate 

predictions of the outbreak's trajectory. This 

approach is particularly useful in public health 

planning and response, as it enables more informed 

decision-making based on reliable data. Pandey 

and Mishra (2023) proposed a fuzzy logic-based 

model for estimating COVID-19 infection risk. 

Their model focused on assessing the risk of 

infection based on various factors, providing a 

valuable tool for public health officials to identify 

high-risk areas and implement targeted 

interventions. This approach highlights the 

potential of fuzzy logic to enhance risk assessment 

and management during a pandemic.  Zhang and 

Chen (2023) developed a fuzzy logic-based SEIR 

model for COVID-19 transmission. Their study 

highlighted the benefits of integrating fuzzy logic 

with SEIR models to improve the accuracy and 

reliability of predictions. This approach provided a 

more nuanced understanding of the virus's 

transmission dynamics, crucial for effective 

pandemic management. Ghosh and Chatterjee 

(2024) utilized fuzzy logic in SEIR models for 

COVID-19 epidemic simulation. Their study 

demonstrated how fuzzy logic could improve the 

accuracy and reliability of SEIR models by 

incorporating uncertainties and providing more 

adaptable predictions. This work underscores the 

importance of integrating fuzzy logic with 

traditional epidemiological models to enhance their 

predictive capabilities. Huang and Zhao (2024) 
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focused on fuzzy logic modeling for COVID-19 

prediction. Their research demonstrated the 

effectiveness of fuzzy logic in capturing the 

complexities and uncertainties of the virus's spread. 

They showed that their fuzzy logic model could 

provide more accurate predictions compared to 

traditional models, highlighting the potential of 

fuzzy logic to enhance epidemiological modeling. 

Jumai & Caleb (2025), Using nonlinear 

Mathematical model to study the impact of 

infectious disease on Coronavirus disease in a 

fuzzy environment. A Mathematical model for 

quantitative analysis of Covid-19 in fuzzy 

environment is formulated and computed the model 

disease free equilibrium state and analyzed its local 

stability in a well defined positively invariant and 

attracting set Ώ for human populations using the 

next generation matrix. 

 

II. MATHEMATICAL MODEL: 
(i) Susceptible  𝐒 : Individuals who are at risk of 

contracting the virus. 

(ii) Exposed  𝐄 : Individuals who have been 

exposed to the virus but are not yet infectious. 

Infected  𝐈 : Individuals who are capable of 

spreading the virus. 

(iii) Hospitalized  𝐇 : Infected individuals who 

require hospitalization. 

(iv)  Quarantined  𝐐 : Infected individuals who 

are quarantined but not hospitalized. 

(v) Recovered  𝐑 : Individuals who have 

recovered from the virus and are assumed to be 

immune. 

(vi)  Deceased  𝐃 : Individuals who have died 

from the virus. 

 

Using the fuzzy parameters in the differential 

equations: 
dS

dt
= −β

S(I+Q)

N
     (1) 

dE

dt
= β

S(I+Q)

N
− σE                 (2) 

dI

dt
= σE −  η + δ + γ + μ I   (3) 

dH

dt
= ηI −  γ + μ H    (4) 

dQ

dt
= δI −  γ + μ Q    (5) 

dR

dt
= γ I + H + Q     (6) 

dD

dt
= μ I + H + Q     (7) 

 

III. BASIC REPRODUCTION 

NUMBER: 
To find R0, we need to consider the next-

generation matrix, which involves the rate of new 

infections and the rate of transitions among 

compartments. The primary focus is on the infected 

individuals  I , as they are the source of new 

infections. 

The new infections are generated by the 

terms involving β, the transmission rate. 

Specifically, new infections are generated from the 

exposed compartment  E  due to contact with 

infected (I) and quarantined  Q  individuals.  The 

transitions from exposed to infected  σ  and from 

infected to other compartments  η, δ, γ, η  need to 

be considered. 

The next-generation matrix G is 

formulated by considering the rate at which new 

infections occur and the rate at which individuals 

leave the infectious compartments. 

Infection Matrix  F : 

F =  
βS

N

βS

N

0 0
   

Transition Matrix  V : V =  
σ 0

− η + δ + γ + ν σ
  

 

Next-Generation Matrix  FV−1 : 
First, we need to invert the transition matrix V: 

V−1 =  

1

σ
0

 η+δ+γ+ν 

σ2

1

σ

   

Then, multiply F and V−1: 

G =  
βS

N

βS

N

0 0
  

1

σ
0

 η+δ+γ+ν 

σ2

1

σ

 =

 
βS

Nσ
+

βS

N

 η+δ+γ+ν 

σ2

βS

Nσ

0 0
    

The basic reproduction number R0 is given by the 

spectral radius (largest Eigen value) of the next-

generation matrix G. 

R0 = ρ G =
βS

Nσ
+

βS

N

 η+δ+γ+ν 

σ2   (8) 

Given that initially, S ≈ N  , we can simplify the 

expression: 

R0 = β 
1

σ
+

 η+δ+γ+ν 

σ2      (9) 

 

This R0 formula reflects the combined 

effects of transmission, progression, and transitions 

to different health states (hospitalization, 

quarantine, recovery, and death). It accounts for the 

uncertainty and variability in these parameters by 

incorporating the fuzzy logic approach. 

 

IV. EXTENDED SEIR MODEL 

INCORPORATING FUZZY LOGIC: 
Fuzzy-based compartmental mathematical 

model for the COVID-19 outbreak, we will extend 

the basic SEIR model by adding compartments and 
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incorporating fuzzy logic to handle uncertainties. 

The advanced model SEIR will include additional 

compartments like hospitalized  H , quarantined 
 Q , and deceased  D , and will use fuzzy logic to 

manage the uncertainty in parameters. 

 

4.1. Fuzzy parameters: The parameters are 

fuzzified to handle uncertainties and variabilities: 

(i) Transmission rate (β): Affected by factors like 

population density, social distancing, and mask 

usage. 

(ii) Progression rate from exposed to infected  σ : 

Influenced by the incubation period. 

(iii) Hospitalization rate  η : Influenced by the 

severity of the disease and healthcare access. 

(iv) Quarantine rate  δ : Determined by the 

effectiveness of testing and isolation policies. 

(v) Recovery rate  γ : Dependent on healthcare 

quality and patient health. 

(vi) Mortality rate  μ : Influenced by healthcare 

capacity and patient demographics. 

 

4.2. Fuzzy Membership Functions: Define fuzzy 

sets for each parameter, such as "Low", "Medium", 

and "High".  

(i) Transmission rate  𝜷 :  

𝛽𝐿𝑜𝑤 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.05,1.0 ,  0.1,0.5 , (0.15,0.0)   
𝛽𝑀𝑒𝑑𝑖𝑢𝑚 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.1,0.0 ,  0.15,1.0 , (0.2,0.0)   
𝛽𝐻𝑖𝑔ℎ =

𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.15,0.0 ,  0.2,0.5 , (0.25,1.0)   
 

(ii)  Progression Rate from Exposed to Infected 

 𝝈 : 

𝜎𝐿𝑜𝑤 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.05,1.0 ,  0.1,0.5 , (0.15,0.0)   

𝜎𝑀𝑒𝑑𝑖𝑢𝑚 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.1,0.0 ,  0.15,1.0 , (0.2,0.0)   
𝜎𝐻𝑖𝑔ℎ =

𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.15,0.0 ,  0.2,0.5 , (0.25,1.0)   
 

(iii)  Hospitalization Rate  𝜼 : 

𝜂𝐿𝑜𝑤 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.01,1.0 ,  0.03,0.5 , (0.05,0.0)   
𝜂𝑀𝑒𝑑𝑖𝑢𝑚 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.03,0.0 ,  0.05,1.0 , (0.07,0.0)   
𝜂𝐻𝑖𝑔ℎ =

𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.05,0.0 ,  0.07,0.5 , (0.1,1.0)   
 

(iv)  Quarantine Rate  𝜹 : 

𝛿𝐿𝑜𝑤 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.02,1.0 ,  0.05,0.5 , (0.08,0.0)  
𝛿𝑀𝑒𝑑𝑖𝑢𝑚 =
𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.05,0.0 ,  0.08,1.0 , (0.1,0.0)  
𝛿𝐻𝑖𝑔ℎ =

𝐹𝑢𝑧𝑧𝑦 𝑠𝑒𝑡  0.08,0.0 ,  0.1,0.5 , (0.12,1.0)   
 

(v) Recovery Rate  𝛄 : 

γLow =
Fuzzy set  0.01,1.0 ,  0.03,0.5 , (0.05,0.0)  
γMedium =
Fuzzy set  0.03,0.0 ,  0.05,1.0 , (0.07,0.0)  
γHigh =

Fuzzy set  0.05,0.0 ,  0.07,0.5 , (0.1,1.0)   
 

(vi) Mortality Rate  𝛎 : 

νLow =
Fuzzy set  0.005,1.0 ,  0.01,0.5 , (0.015,0.0)  
νMedium =
Fuzzy set  0.01,0.0 ,  0.015,1.0 , (0.02,0.0)  
νHigh =

Fuzzy set  0.015,0.0 ,  0.02,0.5 , (0.025,1.0)   
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4.3. Fuzzy Rules: Establish rules to model the 

relationships between variables: 

(i) If social distancing is β is "Low". 

(ii) If healthcare capacity is "Overwhelmed", then 

ν is "High". 

(iii) If testing rate is "High", then δ is "High" 

 

4.4. Defuzzification: 

For simplicity, let's use the centroid method for 

defuzzification. The centroid method calculates the 
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center of gravity of the fuzzy set. Here's an outline 

of the defuzzification process for the transmission 

rate  β : 

βLow = Centroid =
 0.05+0.1+0.15 

3
= 0.1  

βMedium = Centroid =
 0.1+0.15+0.2 

3
= 0.15  

βHigh = Centroid =
 0.15+0.2+0.25 

3
= 0.2  

We can similarly calculate the centroids for other 

parameters. 

Using the defuzzified parameters, we calculate R0 

for the fuzzy SEIR model. 

R0 = β 
1

σ
+

 η+δ+γ+ν 

σ2    

Let's assume the defuzzified centroids for all 

parameters are as follows: 

β = 0.2, σ = 0.15, η = 0.05, δ = 0.08, γ =
0.07, ν = 0.01  

Plugging these values into the R0 formula: 

R0 = 0.2  
1

0.15
+

 0.05+0.08+0.07+0.01 

(0.15)2  = 3.20  

 

The basic reproduction number  R0    for 

the extended SEIR model with fuzzified parameters 

is 3.20. This indicates that, on average, each 

infected individual is expected to cause 3.20 new 

infections in a fully susceptible population. This 

value reflects the combined effects of transmission, 

progression, hospitalization, quarantine, recovery, 

and mortality rates under the uncertainty captured 

by the fuzzy logic approach. 

 

V. RESULTS AND DISCUSSION: 
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The graph (7) illustrates the dynamics of 

an extended fuzzy-based SEIR model over 160 

days, showing the number of individuals in 

different compartments: susceptible, exposed, 

infected, hospitalized, quarantined, recovered, and 

deceased. Initially, the susceptible population 

decreases rapidly as people move into the exposed 

and infected categories. The exposed and infected 

populations peak around days 25 and 30, 

respectively, before declining. Hospitalized and 

quarantined cases peak later, around days 40 and 

45. The number of recovered individuals rises 

sharply, plateauing around day 80, indicating a 

large portion of the population recovers. The 

deceased population gradually increases throughout 

the period, reflecting ongoing mortality. This 

model effectively captures the epidemic's 

progression and the impact of interventions over 

time. 

The graph (8) shown is a heatmap 

illustrating the basic reproduction number  R0  as a 

function of varying transmission rates β and 

progression rates  σ . The x-axis represents the 

transmission rate β, which ranges from 0.05 to 

0.25, while the y-axis represents the progression 

rate (σ\sigmaσ), ranging from 0.05 to 0.25. The 

color gradient indicates the magnitude of R0  with 

the scale bar on the right showing values from 0 to 

25. Darker blue colors represent lower values of R0

, while lighter colors (transitioning to yellow and 

red) represent higher values. The heatmap shows 

that R0 increases with both increasing transmission 

rate β and progression rate (σ). This implies that 

higher transmission and progression rates lead to a 

higher basic reproduction number, indicating a 

more rapidly spreading infection. 

 

VI. CONCLUDING REMARKS: 
In conclusion, the extended SEIR model 

incorporating fuzzy logic represents a significant 

advancement in epidemiological modeling, 

particularly for COVID-19. By differentiating 

between various compartments such as Exposed 

 E , Infected  I , Hospitalized  H , Quarantined 

 Q , Recovered  R , and Deceased D, and by 

utilizing fuzzy logic to handle the uncertainties in 

key parameters like transmission rate  β , 

progression rate  σ , hospitalization rate  η , 

quarantine rate  δ , recovery rate  γ , and mortality 

rate  γ , this model provides a more nuanced and 

adaptable framework for predicting disease 

dynamics. The ability to dynamically adjust these 

parameters based on real-time data enhances the 

model's accuracy in forecasting infection trends 

and calculating the Basic Reproduction Number 

 R0 . This comprehensive approach not only 

improves the reliability of epidemic predictions but 

also aids in devising effective public health 

strategies and resource allocation. The success of 

this model in accurately simulating COVID-19 

spread underscores its potential utility in managing 

future infectious disease outbreaks, highlighting the 

critical role of advanced modeling techniques in 

public health planning and response. 
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