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ABSTRACT 

This study proposed a new and efficient approach 

for estimating probabilities of misclassification and 

discrimination.The study explores the estimation of 

apparent and optimum probabilities of 

misclassification for three populations using real-

life anthropometric data. It also compares the 

effectiveness of Linear Discriminant Analysis 

(LDA) and Quadratic Discriminant Analysis 

(QDA) in classifying data from three distinct 

populations, assessing their accuracy and 

reliability. Real life anthropometric datasets were 

utilized, and both stratified random and simple 

random sampling techniques were employed, 

comprising three populations of school students 

with four variables.A computer programming 

language codes were written via R-Studio package 

to solve the numerical problems posed in the study.  

The model misclassified around 4.86% of 

observations for Linear Discriminant Analysis 

(LDA) and approximately 3.71% for Quadratic 

Discriminant Analysis (QDA). QDA showed 

higher accuracy (98.76% vs. 98.38%) and lower 

error rate (1.24% vs. 1.62%) compared to LDA. 

Additionally, QDA demonstrated excellent 

discriminatory power with a perfect AUC-ROC 

score.The study shown that QDA outperformed 

LDA in terms of accuracy and error rates, 

demonstrating superior discriminatory power. This 

study provided valuable insights for those working 

with datasets involving multiple populations and 

variables with potential applications in various 

fields such as multivariate methods, data science, 

machine learning, business, healthcare and finance. 

Furthermore, the study offers a practical approach 

to classifying observations into distinct populations 

using LDA and QDA, achieving high accuracy 

rates for real-life data scenarios. It establishes a 

foundation for future research endeavours 

andpresents a comprehensive framework for 

comparing LDA and QDA performance in ESD 

data, highlighting the effectiveness of QDA in 

handling skewed data for multiple populations .The 

research recommended further exploration into 

developing a generalized model for estimating 

probabilities of misclassification via ESD with 

flexible distribution assumptions and robust 

estimation methods. 

Keywords:  Edgeworth Series Distribution, 

Optimal probability, Quadratic discriminant 

analysis, Linear discriminant analysis, AUC-ROC  

 

I. INTRODUCTION 
Error can be defined as an act or condition 

of ignorant or imprudent deviation from a code of 

behavior or an act involving an unintentional 

deviation from truth or accuracy (Venkatesan, 

2014). An error is an action which is inaccurate or 

incorrect. In some usages, an error is synonymous 

with a mistake (Bruno et al., 2015). The etymology 

derives from the Latin term „errare‟, meaning „to 

stray‟. In statistics, „error‟ refers to the difference 

between the value which has been computed and 

the correct value (Metsämuuronen, 2022). 

A classification problem occurs when one 

makes a number of measurements on objects 

(observations) and wishes to classify the 

observations into one of several groups on the basis 

of the measurements. The objects (observations) 

cannot be identified with a group directly without 

recourse to the measurements (Awogbemi and 

Onyeagu, 2019). 

Fisher (1936) illustrated this classification 

issue by classifying iris flower from unknown 

group (specie) to any of the three known species 

(Iris setosa red, iris versicolour green, and iris 

virginica black) with regards to their attribute 

(Septal length in cm, septal width in cm, petal 

length in cm and petal width in cm) as recorded by 

(Awogbemi and Onyeagu, 2019). The general 

procedure for classifying an observation, x with p 

observed characters (x1,…xp) consists of 
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determining a function of (x1,…xp) approximately, 

and assigning x to one of two populations 

depending on the value of the discriminant function 

(Ruiz,  2019). Since the observation vector is 

random and the parameters for determining this 

function are often unknown, the procedure could 

result into two types of errors defined by errors of 

misclassification. Errors of misclassification occur 

when there is selection of criteria that is not 

suitable for classification (John, 2010). 

When constructing a classification 

procedure, it is important to minimize on the 

average, the bad effects of misclassification since a 

good classification procedure results to few 

misclassifications (Hand, 2012). 

When an experimenter fails to recognize 

an observation to be non-normal, and proceeds to 

use the normal regions for classification the 

question that emanates is “how does this failure to 

transform to normality, prior to classification affect 

the probability of misclassification”? This problem 

was investigated by comparing the errors of 

misclassification associated with Johnson system 

distributions in the appropriate transformable non-

normal case with that of normal distribution 

(Awogbemi & Onyeagu, 2019). Errors of 

misclassification associated with Gamma 

distribution were also examined by Mahmoud and 

Mustafa (1995). A lot of work has been done by 

researchers in connection with errors of 

misclassification when the underlying distribution 

is transformable non-normal distribution, but the 

errors of misclassification associated with 

persistent non-normal distribution remain 

unresolved (Morgan et al., 2016). 

Awogbemi and Onyeagu (2019) studied 

on errors of misclassification associated with 

Edgeworth series distribution survey on two 

populations using small sample sizes. However, 

this work majors on large sample sizes from three 

populations which none of the researchers sighted 

had written on. This justified the need for this work 

 

II. REVIEW OF RELATED 

LITERATURE 
Gasana et al. (2024) conducted a study on 

the moments of the likelihood-based discriminant 

function, which led to quadratic discriminant 

functions. They separately considered classification 

into one of two known multivariate normal 

populations with: known covariance matrix; 

unknown covariance matrix. The two cases 

depended on the sample size and an unknown 

squared Mahalanobis distance. Since the exact 

distributions were complicated to obtain, the 

researchers established moments for the likelihood-

based discriminant functions to express the basic 

characteristics of the respective distributions. The 

study's results could be utilized in various 

applications, such as: Edgeworth expansion, which 

provided alternative approximations of the 

distribution of misclassification errors. By 

examining the moments of the likelihood-based 

discriminant function, they contributed to a deeper 

understanding of the underlying distributions and 

paved the way for further research in discriminant 

analysis. 

Olusola and Onyeagu (2020) conducted a 

research study on binary classification problems in 

discriminant analysis using linear programming 

methods. The study focused on assigning a new 

object with multivariate features to one of two 

distinct populations based on historical sample sets 

from both populations. The researchers proposed a 

linear discriminant analysis framework called 

Minimised Sum of Deviations by Proportion 

(MSDP) to model the binary classification 

problem. In the MSDP formulation, they 

minimised the sum of proportion of exterior 

deviations subject to: group separation constraints; 

normalisation constraint; upper bound constraints 

on proportions of exterior deviations, sign 

unrestriction and non-negativity constraints. They 

adopted the two-phase method in linear 

programming to generate the discriminant function 

and constructed the decision rule for group-

membership prediction using the apparent error 

rate. The performance of MSDP was compared to 

existing linear discriminant models using a 

previously published dataset on road casualties. 

The results showed that MSDP was more 

promising and well-suited for the imbalanced 

dataset on road casualties.  

Kanuti and Ngaruye (2024) conducted a 

research on asymptotic results for expected 

probability of misclassifications in linear 

discriminant analysis with repeated measurements. 

They proposed approximations for the 

misclassification probabilities in linear 

discriminant analysis when the group means had a 

bilinear regression structure. They checked the 

accuracies of the proposed approximations 

numerically by conducting a Monte Carlo 

simulation. The key contributions were: they gave 

a unified location and scale mixture expression of 

the standard normal distribution for the linear 

discriminant function; they obtained estimated 

approximations of misclassification for the three 

cases: unweighted case, weighted known 

covariance matrix, and weighted unknown 
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covariance matrix. The findings were: they found 

that larger p (number of repeated measurements) 

was better for classification when the covariance 

matrix was known, also in the unweighted case; 

they discovered that in the case where the 

covariance matrix was unknown, they gained more 

information if fewer repeated measurements were 

used compared to when many repeated 

measurements closer to the number of included 

sample size were used. The research provided 

valuable insights into the behavior of LDA with 

repeated measurements and offered practical 

guidelines for improving classification accuracy. 

 

III. RESEARCH METHODOLOGY 
3.1 Data Collection 

A cross- sectional study was conducted on 

the Anthropometric status of school learners in 

selected schools in Orumba North Local 

Government Area of Anambra State.This study 

used stratified random and simple random 

sampling techniques respectively, designed for 

school learners. Firstly, the schools were selected 

randomly by stratified sampling method according 

to socio-economic levels from among schools in 

Orumba North Local Government Area which 

represents one of the largest LGA in Anambra 

State. Secondly, simple random sampling was 

conducted in each strata of high socio-economic of 

interest. A total of 350 school learners were 

examined and equal allocation was maintained 

according to gender that is 175 males and 175 

females.  With a rich cultural heritage, the area is 

predominantly inhabited by the Igbo people, with a 

population of approximately 170,000 according to 

2006 census.  The heights of the learners were 

measured with the help of calibrated meter rule to 

the nearest 0.1cm. The learners were positioned 

with their feet closed together and stand uprightly, 

barefooted against a vertical measuring meter rule. 

Once the correct position was achieved the 

interviewer lowered the head plate until it just 

touched the top of the learners head and while 

maintaining this position, he/she were asked to 

stand upright without lifting the heels. Other 

variables (head circumference, shoulder width, 

elbow height) were also measured, and recorded in 

the nearest 0.1cm.  The variables considered are 

defined for the three populations (Nursery, 

Primary, and Secondary) as follows: 

Z1: Height 

Z2: Head Circumference 

Z3: Shoulder Width 

Z4: Elbow Height 

The data obtained from the schools are presented in 

Table 3.1 (See Appendix A). 

 

3.2 Proposed Method of Estimating Probabilities of Misclassification Via LDA 

Let xijk  i= 1, 2, 3;  j = 1, 2,3;   k = 1,2,3 are to be independent samples of sizes n1 , n2  and n3 from population 

π1 , π2 and π3. To estimate the apparent probabilities of misclassification, we define 

E12E =   
Yj

n1

n1

j=1

 

Where Yj = 1 if xij  is classified as belonging to π2 and Yj = 0, if xij  is classified as belonging to π1, j = 1, 2, 3 

….. n1 

Similarly,  

E21E =   
δj

n2

n2

j=1

 

Where E21E is the apparent probability of misclassification when an observation from population π2 is 

misclassified by ESD (Awogbemi and Onyeagu, 2019). 

Where δj = 1 if x2j is classified as belonging to π1 and δj = 0, if x2j is classified as belonging to π2, j = 1, 2, 3 

….. n2 

E13E =   
Aj

n1

n1

j=1

 

Where Aj = 1 if x1j is classified as belonging to π3 and Aj = 0, if AIj  is classified as belonging to π1, j = 1, 2, 3 

….. n1 

E23E =   
Bj

n2

n2

j=1

 

(1) 

 

(2) 

 

(3) 

 

(4) 
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Where Bj = 1 if x2j is classified as belonging to π3 and Bj = 0, if x2j is classified as belonging to π2, j = 1, 2, 3 

….. n2 

E31E =   
Cj

n3

n3

j=1

 

Where Cj = 1 if x3j is classified as belonging to π1 and Cj = 0, if x3j is classified as belonging to π3, j = 1, 2, 3 

….. n3 

E32E =   
Dj

n3

n3

j=1

 

Where Dj = 1 if x3j is classified as belonging to π2 and Dj = 0, if x3j is classified as belonging to π3, j = 1, 2, 3 

….. n3 

Following the same procedure, for normal distribution classification rule for the purpose of comparison thus: 

E12N =   
Yj

n1

n1
j=1             (7)  

E21N =   
σ j

n2

n2
j=1              (8) 

E23N =   
B j

n2

n2
j=1            (9) 

E13N =   
A j

n1

n1
j=1            (10) 

E31N =   
C j

n3

n3
j=1            (11) 

E32N =   
D j

n3

n3
j=1          (12) 

 

Where: 𝐸12𝑁is the apparent probability of 

misclassification when observation from 

population 𝜋1is misclassified by normal 

distribution (ND) classificatory rule. 

𝐸21𝑁is the apparent probability of 

misclassification when observation from 

population 𝜋2 is misclassified by ND classificatory 

rule (Awogbemi and Onyeagu, 2019). 

E23N is the apparent probability of 

misclassification when observation from 

population 𝜋2 is misclassified by ND classificatory 

rule. 

Also E31N is the apparent probability of 

misclassification when observation from 

population 𝜋3 is misclassified by ND classificatory 

rule. 

E32N is the apparent probability of 

misclassification when observation from 

population 𝜋3 is misclassified by ND classificatory 

rule. 

 

3.2.1MODIFIED CLASSIFICATION RULES FOR NORMAL DISTRIBUTION (UNIVARIATE)VIA 

LDA 

Let the probability density function of 𝑥 in 𝜋𝑖  (i = 1, 2, 3) be 

𝑓𝑖 𝑥 =
1

  3𝜋
𝜎 = 𝑒𝑥𝑝[−

1

3
 
𝑥−𝜇 𝑖

𝜎
)2 , −∞ < 𝑥 < ∞, 𝑖 = 1, 2,3    (3.2) 

If 𝜃 is the mean of the observation 𝑥 and Ho: θ = μ1 vs Ha: θ = μ2 = μ3, then the likelihood when μ1< μ2< μ3. 

𝐿 =
𝑓1 𝑥 

𝑓2 𝑥 . 𝑓3 𝑥 .
= 𝑒𝑥𝑝⁡[−

1

3
 (

𝑥−𝜇1

𝜎
)2 +

1

3
  (

𝑥−𝜇2

𝜎
)2] +

1

3
  (

𝑥−𝜇3

𝜎
)2]  (3.2.0a) 

𝐿1 =
1

3
(
𝑥 − 𝜇1

𝜎
)2 +

1

3
(
𝑥 − 𝜇2

𝜎
)2 + 

1

3
(
𝑥 − 𝜇3

𝜎
)2 = 

−1

3𝜎2
 3𝑥 −  𝜇1 + 𝜇2  + 𝜇3     (𝜇3 − 𝜇2 − 𝜇1) 

=  𝑥 −
1

3
(𝜇1 + 𝜇2  + 𝜇3) (

𝜇3−𝜇2−𝜇1

𝜎
)           (3.2.0b) 

 

The result in equation (3.20a) is the 

discriminant function from adjusted Anderson‟s 

classification statistic (w) when the distributions in 

the three populations are univariate normal with 

equal variance but different means (Sedransk, and 

Okamato, 1971). 

According to the Neyman and Pearson 

lemma cited by Rao, (1965), we reject Ho if L<k 

where K is a constant. 

Following equation (3.20) and the decision rule 

made, we specify the classification rule as follows: 

(5) 

 

(6) 
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Classify x as members of 𝜋1if 𝑤 > 0 and or 

classify x as member of π2 if w ≤ 0 and or classify x 

E π2 if w ≤ 0  

Classify x as members of 𝜋3 if 𝑤 < 0 and or 

classify 𝑋𝐸𝜋3  𝑖𝑓 𝑤 ≤  0  (3.2.1) 

 

The rule stated in equation (3.21) reduces to;  

Classify x E π1 if 𝑥 <
1

3
(𝜇1 + 𝜇2  + 𝜇3) 

Classify x E π2 if 𝑥 ≥
1

3
(𝜇1 + 𝜇2  + 𝜇3) 

Classify x E π3 if 𝑥 >
1

3
(𝜇1 + 𝜇2  + 𝜇3) 

     (3.2.2) 

Similarly, when 𝜇1 > 𝜇2 > 𝜇3 the classification 

rule becomes  

Classify x E π3 if 𝑥 ≤
1

3
(𝜇1 + 𝜇2  + 𝜇3)  

Classify x E π2 if 𝑥 <
1

3
(𝜇1 + 𝜇2  + 𝜇3)  

Classify x E π1 if 𝑥 ≥
1

3
(𝜇1 + 𝜇2  + 𝜇3) 

     (3.2.3) 

 

The rules in equations (3.2) is made when 

𝜇1 > 𝜇2 > 𝜇3 and are known. But when the 

parameters 𝜇1, 𝜇2, 𝜇3 are unknown, they are to be 

estimated from the sample sizes of 𝑛1 for  𝜋1 , 𝑛2 

for 𝜋2 and n3 for π3 by 𝑥1 , 𝑥2and 𝑥3. The 

classification rule becomes: 

Classify x ∈  𝜋1 if 𝑥 <
𝑥1  + 𝑥2  + 𝑥3

3
, 𝑥1 < 𝑥2 < 𝑥3

     (3.2.4) 

Similarly; 

Classify 𝑥 ∈  𝜋2   𝑖𝑓 𝑥 ≥
𝑥1  + 𝑥2  + 𝑥3

3
, 𝑥1 < 𝑥2 < 𝑥3

     (3.2.5) 

In the similar way; 

Classify 𝑥 ∈  𝜋3  𝑖𝑓 𝑥 >
𝑥1  + 𝑥2  + 𝑥3

3
, 𝑥1 < 𝑥2 < 𝑥3

     (3.2.6) 

 

3.2.2 MODIFIED CLASSIFICATION RULE FOR EDGEWORTH SERIES DISTRIBUTION (MESD) 

(UNIVARIATE) VIA LDA 

Let the probability density function of population 𝜋𝑖be; 

𝑓𝑖 𝑥 =  1 −
ʎ3

6
𝐷3   

𝑥−𝜇 𝑖

𝜎
 , −∞ < 𝑥 < ∞, 𝑖 = 1,2,3    (3.2.7) 

When 𝜇1 < 𝜇2 < 𝜇3,  the likelihood Ratio (LR) is now 

𝐿 =
𝑓1 𝑥 

𝑓2 𝑥 𝑓3 𝑥 
 

𝐿 =
={1− 

ʎ3
2𝜎3  

𝑥−𝜇 1
𝜎

 + 
ʎ3

6𝛿3  
𝑥−𝜇 1

𝜎
)3  (

𝑥−𝜇 1
𝜎

) 

{1− 
ʎ3

2𝜎3  
𝑥−𝜇 2

𝜎
 + 

ʎ3
Ϭ𝜎3  

𝑥−𝜇 2
𝜎

)3  
𝑥−𝜇 2

𝜎
 .  [1− 

ʎ3
2𝜎3  

𝑥−𝜇 3
𝜎

 + 
ʎ3
Ϭ𝜎3  

𝑥−𝜇 3
𝜎

)3  
𝑥−𝜇 3

𝜎
 
  (3.2.8) 

By implication, equation (3.28) becomes; 

𝐿 =  
𝐴 𝑒𝑥𝑝 [−

1

2
 
𝑥−𝜇 1

𝜎
 

2
]

𝐵 𝑒𝑥𝑝 [−
1

2
 (
𝑥−𝜇 2

𝜎
)2]  𝑅 𝑒𝑥𝑝 [−

1

2
 (
𝑥−𝜇 3

𝜎
)2]

       (3.2.9) 

𝑤ℎ𝑒𝑟𝑒 𝐴 = [1 −  
ʎ3

2𝜎3  
𝑥−𝜇1

𝜎
 +  

ʎ3

Ϭ𝜎3  
𝑥−𝜇1

𝜎
 

3

]     (3.3.0) 

𝐵 = [1 −  
ʎ3

2𝜎3  
𝑥−𝜇2

𝜎
 +  

ʎ3

Ϭ𝜎3  
𝑥−𝜇2

𝜎
 

3

]      (3.3.1) 

𝑅 = [1 −  
ʎ3

2𝜎3  
𝑥−𝜇3

𝜎
 +  

ʎ3

Ϭ𝜎3  
𝑥−𝜇3

𝜎
 

3

]      (3.3.2) 

According to Neyman and Pearson Lemma, 

We reject H0 if 

𝐿 < 𝐾 ≡ 𝑙𝑛𝐿 <  𝑘         (3.3.3) 

Taking 𝑘 = 1 ⟹ 𝐼𝑛𝐿 < 0 

Then we reject x ∈𝜋1 if 

lnA −
1

2
{
𝑥−𝜇1

𝜎
}2 − 𝐼𝑛𝐵 +

1

2
{
𝑥−𝜇2

𝜎
}2. 𝐼𝑛𝑅 +

1

2
{
𝑥−𝜇3

𝜎
}2 < 𝑜    (3.3.4) 

Equation (3.34) reduces to 

In  
𝐴

𝐵𝑅
 +  𝑥 −  

𝜇1+ 𝜇2  + 𝜇3

3
   

𝜇1  − 𝜇2   − 𝜇3

𝜎
 < 𝑜     (3.3.5) 

From equation (3.35) the classification rule will now be: when 𝜇1 < 𝜇2 < 𝜇3 

Classify x as element of 𝜋1if  

𝐿𝑛  
𝐴

𝐵𝑅
 + 𝑊 > 0 

or classify 𝑥 ∈  𝜋1  𝑖𝑓 𝑙𝑛  
𝐴

𝐵𝑅
 + 𝑊 > 0      (3.3.6) 

classify x as element 𝜋2if  
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𝐿𝑛  
𝐴

𝐵𝑅
 + 𝑊 ≤ 0  or classify 𝑥 ∈  𝜋2  𝑖𝑓 𝑙𝑛  

𝐴

𝐵𝑅
 + 𝑊 ≤ 0   (3.3.7) 

and 

classify x ∈  𝜋3if  

𝐿𝑛  
𝐴

𝐵𝑅
 + 𝑊 < 0         (3.3.8) 

When𝜇1 > 𝜇2 > 𝜇3 

Classify 𝑥 ∈  𝜋1  𝑖𝑓 𝑙𝑛  
𝐴

𝐵𝑅
 − 𝑊 > 0       (3.3.9) 

Classify 𝑥 ∈  𝜋2  𝑖𝑓 𝑙𝑛  
𝐴

𝐵𝑅
 − 𝑊 ≤ 0       (3.4.0) 

and 

Classify 𝑥 ∈  𝜋3  𝑖𝑓 𝑙𝑛  
𝐴

𝐵𝑅
 − 𝑊 < 0       (3.4.1) 

 

When the parameters 𝜇1,  𝜇2,  𝜇3 are 

unknown, they are to be estimated by 𝑥1 , 𝑥2, 𝑥3 

respectively and substituted in equation (3.41) 

before classification starts. 

In the method of the comparisons of errors 

of misclassification using MESD and MND 

classification rules, and data generated from the 

MESD, we would investigate by empirical method, 

the effect of applying normal classification rule 

(likelihood ratio) when the distribution is MESD. 

Thus the classification rule for MESD is left in the 

form; when 𝜇1 < 𝜇2, < 𝜇3 (Chun‟g‟anda 1976)\ 

 

Classify 𝑥 ∈ 𝜋1  𝑖𝑓 
𝐴 𝑒𝑥𝑝  −

1

2
 
𝑥−𝜇 1

𝜎
 

2
 

𝐵 𝑒𝑥𝑝 [−
1

2
 (
𝑥−𝜇 2

𝜎
)2] .  𝑅 𝑒𝑥𝑝 [−

1

2
 (
𝑥−𝜇 3

𝜎
)2]

<  1    (3.4.2) 

also 

classify 𝑥 ∈ 𝜋2  𝑖𝑓 
𝐴 𝑒𝑥𝑝  −

1

2
 
𝑥−𝜇 1

𝜎
 

2
 

𝐵 𝑒𝑥𝑝 [−
1

2
 (
𝑥−𝜇 2

𝜎
)2] .  𝑅 𝑒𝑥𝑝 [−

1

2
 (
𝑥−𝜇 3

𝜎
)2]

≥  1    (3.4.3) 

and 

classify 𝑥 ∈ 𝜋3  𝑖𝑓 
𝐴 𝑒𝑥𝑝  −

1

2
 
𝑥−𝜇 1

𝜎
 

2
 

𝐵 𝑒𝑥𝑝 [−
1

2
 (
𝑥−𝜇 2

𝜎
)2] .  𝑅 𝑒𝑥𝑝 [−

1

2
 (
𝑥−𝜇 3

𝜎
)2]

>  1   (3.4.4) 

 

Where A and B remain as defined earlier in equation (3.30), (3.31) and (3.32) 

The normal classificatory rule when 𝜇1 < 𝜇2 < 𝜇3, is  

classify 𝑥 ∈  𝜋1  𝑖𝑓 𝑥 <  
𝜇1+𝜇2+𝜇3

3
  

also classify 𝑥 ∈  𝜋2  𝑖𝑓 𝑥 >  
𝜇1+𝜇2+𝜇3

3
  

and 

Classify 𝑥 ∈  𝜋3  𝑖𝑓 𝑥 ≥  
𝜇1+𝜇2+𝜇3

3
        (3.4.5) 

 

3.3 PROPOSED METHOD OF ESTIMATING 

PROBABILITIES OF MISCLASSIFICATION 

VIA QDA 

Let 𝑥𝑖𝑗𝑘  i= 1, 2, 3;  𝑗 = 1, 2,3;   𝑘 = 1,2,3be 

independent samples of sizes 𝑛1 , 𝑛2 𝑎𝑛𝑑 𝑛3 from 

population 𝜋1 , 𝜋2  𝑎𝑛𝑑 𝜋3. To estimate the apparent 

probabilities of misclassification, we define. 

 

QDA Classification Rule 

𝐸12𝑄

=   
𝑍𝑗

𝑛1

𝑛1

𝑗=1

                                                                                                                                          (3.4.6) 

Where 𝑍𝑗 = 1 if 𝑥𝑖𝑗  is classified as belonging to 𝜋2 

and 𝑍𝑗 = 0, if 𝑥𝑖𝑗  is classified as belonging to 𝜋1, j 

= 1, 2, 3 ….. n1 

Similarly,  

𝐸21𝑄

=   
𝜃𝑗

𝑛2

𝑛2

𝑗=1

                                                                                                                                          (3.4.7) 

where E21Q, is the apparent probability of 

misclassification when an observation from 

population π2 is misclassified by QDA. 

Where 𝜃𝑗 = 1 if 𝑥2𝑗  is classified as belonging to 𝜋1 

and 𝜃𝑗 = 0, if 𝑥2𝑗  is classified as belonging to 𝜋2, j 

= 1, 2, 3 ….. n2 
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𝐸13𝑄

=   
𝛼𝑗

𝑛1

𝑛1

𝑗=1

                                                                                                                                          (3.4.8) 

Where 𝛼𝑗 = 1 if 𝑥1𝑗  is classified as belonging to 𝜋3 

and 𝛼𝑗 = 0, if 𝛼𝑗  is classified as belonging to 𝜋1, j 

= 1, 2, 3 ….. n1 

𝐸23𝑄

=   
∅𝑗

𝑛2

𝑛2

𝑗=1

                                                                                                                                      (3.4.9) 

Where ∅𝑗 = 1 if 𝑥2𝑗  is classified as belonging to 

𝜋3 and ∅𝑗 = 0, if 𝑥2𝑗  is classified as belonging to 

𝜋2, j = 1, 2, 3 ….. n2 

𝐸31𝑄

=   
𝛿𝑗

𝑛3

𝑛3

𝑗=1

                                                                                                                                       (3.5.0) 

Where 𝛿𝑗 = 1 if 𝑥3𝑗  is classified as belonging to 𝜋1 

and 𝛿𝑗 = 0, if 𝑥3𝑗  is classified as belonging to 𝜋3, j 

= 1, 2, 3 ….. n3 

𝐸32𝑄

=   
𝜔𝑗

𝑛3

𝑛3

𝑗=1

                                                                                                                                       (3.5.1) 

Where 𝜔𝑗 = 1 if 𝑥3𝑗  is classified as belonging to 

𝜋2 and 𝜔𝑗 = 0, if 𝑥3𝑗  is classified as belonging to 

𝜋3, j = 1, 2, 3 ….. n3 

Following the same procedure, for normal 

distribution classification rule for the purpose of 

comparison thus: 

E12N =   
Yj

n1

n1
j=1     

     (3.5.2)

  

E21N =   
σ j

n2

n2
j=1     

     (3.53) 

E23N =   
B j

n2

n2
j=1     

     (3.5.4) 

E13N =   
A j

n1

n1
j=1     

       

(3.5.5) 

E31N =   
C j

n3

n3
j=1     

     (3.5.6) 

E32N =   
D j

n3

n3
j=1     

     (3.5.7) 

 

Where: 

E12N , E21N , E23N , E13N , E31N  and E32N  are defined 

similarly to the QDA classification rule. 

It should be noted that QDA classification rule uses 

a quadratic discriminant function, which takes into 

account the covariance matrix of each population, 

whereas the LDA classification rule uses a linear 

discriminant function, which assumes equal 

covariance matrices across populations. 

 

3.3.1 MODIFIED CLASSIFICATION RULES FOR NORMAL DISTRIBUTION (MULTIVARIATE) 

USING QDA 

Let the probability density function of x  in 
i (i = 1, 2, 3) be: 

  
   














ii

T
i

i
pi xxxf 



1

2

1
exp

2

1
)(     (3.5.8) 

where x  is a p-dimensional vector, i  is the mean vector, i  is the covariance matrix, and i is the 

determinant of i . 

If θ is the mean of the observation x  and H0: θ = μ1 vs. H1: θ = μ2 = μ3, then the likelihood ratio when μ1< μ2< 

μ3: 

 

 

           










3

1
332

1
221

1
11 2

1

2

1

2

1
exp  xxxxxxL

TTT
(3.68) 

Taking the logarithm and simplifying: 

)()(

)(

32

1

xfxf

xf
L



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            
3

1
332

1
221

1
112

1
)log(  


xxxxxxL

TTT
 

The result in equation (3.27) is the discriminant function from QDA. 

 

Classification Rule: 

Classify x  as members of π1 if w > 0       (3.5.9) 

Classify x  as members of π2 if w ≤ 0 and Δ1> Δ2     (3.6.0) 

Classify x  as members of π3 if w < 0 and Δ2 > Δ3     (3.6.1) 

       

where: 

       
2

1
221

1
11  


xxxxw

TT
     (3.6.2) 

       
3

1
331

1
111  


xxxx

TT
     (3.6.3) 

       
3

1
332

1
222  


xxxx

TT
    (3.6.4) 

 

When the parameters: 1 , 2 , 3 , 1 , 2 , and 3  are unknown, they are estimated from the sample sizes of 

n1 for π1, n2 for π2, and n3 for π3. 

 

Classification Rule becomes: 

 

Classify x ∈ π1 if  

2
1

22
1

22
1

21
1

11
1

11
1

1 22 



TTTTTT xxxxxx  (3.6.5) 

 

Classify x ∈ π2 if  

1
1

11
1

11
1

12
1

22
1

22
1

2 22 



TTTTTT xxxxxx  (3.6.6) 

 

Classify x ∈ π3 if 

2
1

22
1

22
1

23
1

33
1

33
1

3 22 



TTTTTT xxxxxx  (3.6.7) 

 

 

Replace i with ix and i with iS  (sample covariance matrix) for estimated parameters. 

 

Note: QDA assumes different covariance matrices for each population, whereas LDA assumes equal covariance 

matrices. 

 

3.3.2 MODIFIED CLASSIFICATION RULE FOR EDGEWORTH SERIES DISTRIBUTION (MESD) 

USING QDA 

 

Let the probability density function of population πibe: 

fi x =  1 −
ʎ3

6
D3   

x−μ i

σ
 , −∞ < x < ∞, i = 1,2,3    (3.6.8) 

3,2,1,,
6

1)( 33 






 








 ix

x
Dxf i

i 





     (3.6.9) 

where   is the standard normal density function. 

 

When μ1< μ2< μ3, the likelihood ratio (LR) is: 
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(3.7.0) 

By implication, equation (3.80) becomes: 
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where A, B, and R are defined in equations (3.82), (3.83), and (3.84). 
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These expressions represent the coefficients of the Edgeworth Series Distribution (ESD) for each population π i, 

where: 

- 3  is the skewness parameter 

-   is the standard deviation 

- i  is the mean of population πi 

- x  is the observation 

These coefficients are used in the likelihood ratio and classification rules for ESD. 

Taking the logarithm and simplifying: 
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Classification Rule: 

Classify x as an element of π1 if 0)ln( L or  
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Classify x ∈ π1 if 0)/ln( WBRA        (3.7.6) 

 

Classify x as an element of π2 if 0)ln( L or  

Classify x ∈ π2 if 0)/ln( WBRA        (3.7.7) 

 

Classify x as an element of π3 if 0)ln( L or  

Classify x ∈ π3 if 0)/ln( WBRA        (3.7.8) 

 

where   )/)(()3/)(( 321321   xW  

 

When μ1> μ2> μ3: 

Classify x ∈ π1 if 0)/ln( WBRA        (3.7.9) 

Classify x ∈ π2 if 0)/ln( WBRA        (3.8.0) 

Classify x ∈ π3 if 0)/ln( WBRA        (3.8.1) 

When the parameters: 1 , 2 , 3  are unknown, they are estimated by 1x , 2x , 3x  respectively. 

 

Comparison with Normal Classification Rule: 

Classify x ∈ π1 if )3/)(( 321  x       (3.8.2) 

Classify x ∈ π2 if )3/)(( 321  x       (3.8.3) 

Classify x ∈ π3 if )3/)(( 321  x       (3.8.4) 

It should be noted that QDA takes into account the covariance matrix of each population, whereas LDA assumes 

equal covariance matrices. MESD is used to model non-normal data. 

 

IV. RESULTS OF ANALYSIS AND DISCUSSION 
Table 4.1: Optimum Probabilities of Misclassification and Errors of Misclassification for LDA 

Optimum Probabilities of Misclassification 

Population I Population II Population III Total 

0.00185 0.01130 491071786.3   
0.01315 

 

Errors of Misclassification 

Population I Population II Population III  

Total 

0 0.04857 0  

0.04857 

 

The result in Table 4.1 shows the optimum 

probability of misclassification for each population 

as well as the errors of misclassification for LDA. 

The optimum probability of misclassification for 

population Iis very low (0.00185), indicating that 

the model is highly accurate in classifying 

population I observations. The error of 

misclassification for population I is 0, which means 

that the model correctly classified all population I 

observations.The optimum probability of 

misclassification for population II is slightly higher 

(0.01130), indicating that the model is still accurate 

but slightly less so than for Population I. The error 

of misclassification is 0.04857, which means that 

the model misclassified approximately 4.86% of 

Population II observations. 

The optimum probability of 

misclassification of Population III is extremely low

)1071786.3( 49 , indicating that the model is 

highly accurate in classifying Population III 

observations.The error of misclassification is 0, 

which means that the model correctly classified all 

Population III observations. Hence, the results 

suggest that the model is highly accurate in 

classifying observations for all three populations, 

with Population I and Population III, having 

virtually no errors and Population II, having a small 

error rate. In addition, the total optimum 
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probability of misclassification (0.01315) suggests 

that the model has a relatively low probability of 

misclassifying observations across all populations. 

The total error of misclassification (0.04857) 

indicates that the model misclassifies 

approximately 4.86% of the observations across all 

populations. Hence; in overall, these metrics 

suggest that the model performs well in classifying 

observations, with a low probability of 

misclassification and a low error rate. 

 

Table 4.2: Optimum Probabilities of Misclassification and Errors of Misclassification for QDA 

Optimum Probabilities of Misclassification 

Population I Population II Population III Total 

0.00687 0.02395 371013445.2   
0.03082 

 

Errors of Misclassification 

Population I Population II Population III  

Total 

0 0.03714 0  

0.03714 

 

The result in Table 4.2 shows the optimum 

probability of misclassification for each population 

as well as the errors of misclassification for QDA. 

The optimum probability of misclassification for 

population Iis very low (0.00687), indicating that 

the model is highly accurate in classifying 

population I observations. The error of 

misclassification for population I is 0, which means 

that the model correctly classified all population I 

observations.The optimum probability of 

misclassification for population II is slightly higher 

(0.02395), indicating that the model is still accurate 

but slightly less so than for Population I. The error 

of misclassification is 0.03714, which means that 

the model misclassified approximately 3.71% of 

Population II observations. 

The optimum probability of 

misclassification of Population III is extremely low

)1013445.2( 37 , indicating that the model is 

highly accurate in classifying Population III 

observations.The error of misclassification is 0, 

which means that the model correctly classified all 

Population III observations. Hence, the results 

suggest that the model is highly accurate in 

classifying observations for all three populations, 

with Population I and Population III, having 

virtually no errors and Population II, having a small 

error rate. Furthermore, the total optimum 

probability of misclassification (0.03082) suggests 

that the model has a relatively low probability of 

misclassifying observations across all populations. 

The total error of misclassification (0.03714) 

indicates that the model misclassifies 

approximately 3.71% of the observations across all 

populations. Hence; in overall, these metrics 

suggest that the model performs well in classifying 

observations, with a low probability of 

misclassification and a low error rate. 

 

Table 4.3:Summary of Multiple Metrics Statistics between LDA and QDA 

  LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop III 

Confusion 

Matrix 

Pop I 350 17 0 350 13 0 

Pop II 0 333 0 0 337 0 

Pop III 0 0 350 0 0 350 

Statistics by 

Class 

Sensitivity 1.0000 0.9514 1.0000 1.0000 0.9629 1.0000 

Specificity 0.9757 1.0000 1.0000 0.9814 1.0000 1.0000 

Accuracy 0.9838 0.9876 

AUC-ROC 0.99992925170068 1 

 

The result in Table 4.3 shows that for 

accuracy and error rates, both LDA and QDA 

achieve high accuracy rates, with QDA slightly 

outperforming LDA (98.76% vs. 98.38%). This 

indicates that both models are effective in 

classifying the data. However, QDA's lower error 

rate (1.24% vs. 1.62%) suggests it is more reliable. 

For confusion matrices, QDA's confusion matrix 

shows fewer misclassifications (13 vs. 17) 

compared to LDA. Specifically, QDA reduces 

misclassifications between Population 1 and 

Population 2, which is a common source of error. 
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For ROC Curve and AUC-ROC, QDA's perfect 

AUC-ROC score (1) indicates exceptional 

discriminatory power. LDA's AUC-ROC score 

(0.99992925170068) is also excellent but slightly 

lower. This suggests QDA is better at 

distinguishing between classes. For statistics by 

class, both models demonstrate high sensitivity and 

specificity for all classes. However, QDA shows 

improved sensitivity for Population 2 (0.9629 vs. 

0.9514), indicating better detection of this class. 

Hence, QDA's superior performance across 

multiple metrics suggests it may be more robust. 

The results based on the extensive interpretation, 

concludes that QDA appears to be the better model 

due to its: Higher accuracy rate (98.76% vs. 

98.38%); lower error rate (1.24% vs. 1.62%); 

improved misclassification reduction; exceptional 

discriminatory power (AUC-ROC = 1) and 

enhanced sensitivity for population 2.  

 

4.1 DISCUSSION OF FINDINGS 

This study investigated the apparent and 

optimum probabilities of misclassification for three 

populations from real-life anthropometric datasets. 

For LDA, the optimum probability of 

misclassification for population Iis very low 

(0.00185), indicating that the model is highly 

accurate in classifying population I observations. 

The error of misclassification for population I is 0, 

which means that the model correctly classified all 

population I observations.The optimum probability 

of misclassification for population II is slightly 

higher (0.01130), indicating that the model is still 

accurate but slightly less so than for Population I. 

The error of misclassification is 0.04857, which 

means that the model misclassified approximately 

4.86% of Population II observations.The optimum 

probability of misclassification of Population III is 

extremely low )1071786.3( 49 , indicating 

that the model is highly accurate in classifying 

Population III observations.The error of 

misclassification is 0, which means that the model 

correctly classified all Population III observations. 

Hence, the results suggest that the model is highly 

accurate in classifying observations for all three 

populations, with Population I and Population III, 

having virtually no errors and Population II, having 

a small error rate. Again, the total optimum 

probability of misclassification (0.01315) suggests 

that the model has a relatively low probability of 

misclassifying observations across all populations. 

The total error of misclassification (0.04857) 

indicates that the model misclassifies 

approximately 4.86% of the observations across all 

populations. Hence; in overall, these metrics 

suggest that the model performs well in classifying 

observations, with a low probability of 

misclassification and a low error rate. The results 

of this study support the findings of Kanuti and 

Ngaruye (2024) on asymptotic results for expected 

probability of misclassifications in linear 

discriminant analysis with repeated measurements 

and Gasana et al. (2024) and on moments of the 

likelihood-based discriminant function.The result 

of this study is in disagreement with the findings of 

Olusola and Onyeagu (2020) on binary 

classification problems in discriminant analysis 

using linear programming methods, and Nikita and 

Nikitas (2020) on sex estimation using various 

classification methods. 

For QDA, the optimum probability of 

misclassification for population Iis very low 

(0.00687), indicating that the model is highly 

accurate in classifying population I observations. 

The error of misclassification for population I is 0, 

which means that the model correctly classified all 

population I observations.The optimum probability 

of misclassification for population II is slightly 

higher (0.02395), indicating that the model is still 

accurate but slightly less so than for Population I. 

The error of misclassification is 0.03714, which 

means that the model misclassified approximately 

3.71% of Population II observations.The optimum 

probability of misclassification of Population III is 

extremely low )1013445.2( 37 , indicating that 

the model is highly accurate in classifying 

Population III observations.The error of 

misclassification is 0, which means that the model 

correctly classified all Population III observations. 

Hence, the results suggest that the model is highly 

accurate in classifying observations for all three 

populations, with Population I and Population III, 

having virtually no errors and Population II, having 

a small error rate. Furthermore, the total optimum 

probability of misclassification (0.03082) suggests 

that the model has a relatively low probability of 

misclassifying observations across all populations. 

The total error of misclassification (0.03714) 

indicates that the model misclassifies 

approximately 3.71% of the observations across all 

populations. Hence; in overall, these metrics 

suggest that the model performs well in classifying 

observations, with a low probability of 

misclassification and a low error rate. The results 

of this study support the findings of Kouamo et al. 

(2020) who investigated QDA's performance in 

image classification tasks, highlighting its 

effectiveness and Li et al. (2020) whose work 
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explored QDA's application in medical diagnosis, 

demonstrating its accuracy.  

The findings from objective two conclude 

that for accuracy and error rates, both LDA and 

QDA achieve high accuracy rates, with QDA 

slightly outperforming LDA (98.76% vs. 98.38%). 

This indicates that both models are effective in 

classifying the data. However, QDA's lower error 

rate (1.24% vs. 1.62%) suggests it is more reliable. 

For confusion matrices, QDA's confusion matrix 

shows fewer misclassifications (13 vs. 17) 

compared to LDA. Specifically, QDA reduces 

misclassifications between Population 1 and 

Population 2, which is a common source of error. 

For ROC Curve and AUC-ROC, QDA's perfect 

AUC-ROC score (1) indicates exceptional 

discriminatory power. LDA's AUC-ROC score 

(0.99992925170068) is also excellent but slightly 

lower. This suggests QDA is better at 

distinguishing between classes. For statistics by 

class, both models demonstrate high sensitivity and 

specificity for all classes. However, QDA shows 

improved sensitivity for Population 2 (0.9629 vs. 

0.9514), indicating better detection of this class. 

Hence, QDA's superior performance across 

multiple metrics suggests it may be more robust. 

The results based on the extensive interpretation, 

concludes that QDA appears to be the better model 

due to its: Higher accuracy rate (98.76% vs. 

98.38%); lower error rate (1.24% vs. 1.62%); 

improved misclassification reduction; exceptional 

discriminatory power (AUC-ROC = 1) and 

enhanced sensitivity for population 2. The result of 

this study is in line with the result of Kouamo et al. 

(2020) who found that QDA outperformed LDA in 

image classification tasks; Li et al. (2020) whose 

work demonstrated QDA's superior performance in 

medical diagnosis, mirroring the current study's 

error rates (1.24% vs. 1.62%); Singh et al. (2022) 

whose findings showed QDA's exceptional 

discriminatory power, consistent with the current 

study's AUC-ROC scores (1 vs. 

0.99992925170068); and Huang et al. (2020) who 

compared LDA and QDA performance in 

classification tasks and found QDA's superiority in 

accuracy and AUC-ROC. On the other hand, Wang 

et al. (2020) found LDA performed better in high-

dimensional data, contrasting with the current 

study's findings. 

 

V. CONCLUSION 
This study focussed on estimating 

probabilities of misclassification for three 

populations via Edgeworth series distribution.Real-

life anthropometric dataset was used, consisting of 

three populations of school learners and four 

variates each (Height, Head Circumference, 

Shoulder Width and Elbow Height).The study 

concluded that, for the real-life dataset, the total 

optimum probability of misclassification suggests 

that the model has a relatively low probability of 

misclassifying observations across all populations 

whereas the total error of misclassification 

indicates that the model misclassifies 

approximately 4.86% of the observations across all 

populations for LDA, whereas it misclassifies 

approximately 3.71% of the observations across all 

populations for QDA. Hence; in overall, these 

metrics concluded that the model performs well in 

classifying observations with a low probability. 
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