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ABSTRACT

This study proposed a new and efficient approach
for estimating probabilities of misclassification and
discrimination.The study explores the estimation of
apparent and  optimum  probabilities  of
misclassification for three populations using real-
life anthropometric data. It also compares the
effectiveness of Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis
(QDA) in classifying data from three distinct
populations, assessing their accuracy and
reliability. Real life anthropometric datasets were
utilized, and both stratified random and simple
random sampling techniques were employed,
comprising three populations of school students
with four variables.A computer programming
language codes were written via R-Studio package
to solve the numerical problems posed in the study.
The model misclassified around 4.86% of
observations for Linear Discriminant Analysis
(LDA) and approximately 3.71% for Quadratic
Discriminant Analysis (QDA). QDA showed
higher accuracy (98.76% vs. 98.38%) and lower
error rate (1.24% vs. 1.62%) compared to LDA.
Additionally, QDA  demonstrated  excellent
discriminatory power with a perfect AUC-ROC
score.The study shown that QDA outperformed
LDA in terms of accuracy and error rates,
demonstrating superior discriminatory power. This
study provided valuable insights for those working
with datasets involving multiple populations and
variables with potential applications in various
fields such as multivariate methods, data science,
machine learning, business, healthcare and finance.
Furthermore, the study offers a practical approach
to classifying observations into distinct populations
using LDA and QDA, achieving high accuracy
rates for real-life data scenarios. It establishes a
foundation for future research endeavours
andpresents a comprehensive framework for
comparing LDA and QDA performance in ESD

data, highlighting the effectiveness of QDA in
handling skewed data for multiple populations .The
research recommended further exploration into
developing a generalized model for estimating
probabilities of misclassification via ESD with
flexible distribution assumptions and robust
estimation methods.

Keywords: Edgeworth  Series Distribution,
Optimal  probability, Quadratic  discriminant
analysis, Linear discriminant analysis, AUC-ROC

l. INTRODUCTION

Error can be defined as an act or condition
of ignorant or imprudent deviation from a code of
behavior or an act involving an unintentional
deviation from truth or accuracy (Venkatesan,
2014). An error is an action which is inaccurate or
incorrect. In some usages, an error is synonymous
with a mistake (Bruno et al., 2015). The etymology
derives from the Latin term ‘errare’, meaning ‘to
stray’. In statistics, ‘error’ refers to the difference
between the value which has been computed and
the correct value (Metsdmuuronen, 2022).

A classification problem occurs when one
makes a number of measurements on objects
(observations) and wishes to classify the
observations into one of several groups on the basis
of the measurements. The objects (observations)
cannot be identified with a group directly without
recourse to the measurements (Awogbemi and
Onyeagu, 2019).

Fisher (1936) illustrated this classification
issue by classifying iris flower from unknown
group (specie) to any of the three known species
(Iris setosa red, iris versicolour green, and iris
virginica black) with regards to their attribute
(Septal length in cm, septal width in cm, petal
length in cm and petal width in cm) as recorded by
(Awogbemi and Onyeagu, 2019). The general
procedure for classifying an observation, x with p
observed characters  (X,...xp) consists  of
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determining a function of (xy,...x,) approximately,
and assigning x to one of two populations
depending on the value of the discriminant function
(Ruiz, 2019). Since the observation vector is
random and the parameters for determining this
function are often unknown, the procedure could
result into two types of errors defined by errors of
misclassification. Errors of misclassification occur
when there is selection of criteria that is not
suitable for classification (John, 2010).

When  constructing a  classification
procedure, it is important to minimize on the
average, the bad effects of misclassification since a
good classification procedure results to few
misclassifications (Hand, 2012).

When an experimenter fails to recognize
an observation to be non-normal, and proceeds to
use the normal regions for classification the
question that emanates is “how does this failure to
transform to normality, prior to classification affect
the probability of misclassification”? This problem
was investigated by comparing the errors of
misclassification associated with Johnson system
distributions in the appropriate transformable non-
normal case with that of normal distribution
(Awogbemi & Onyeagu, 2019). Errors of
misclassification ~ associated  with ~ Gamma
distribution were also examined by Mahmoud and
Mustafa (1995). A lot of work has been done by
researchers in connection with errors of
misclassification when the underlying distribution
is transformable non-normal distribution, but the
errors of misclassification associated  with
persistent ~ non-normal  distribution  remain
unresolved (Morgan et al., 2016).

Awogbemi and Onyeagu (2019) studied
on errors of misclassification associated with
Edgeworth series distribution survey on two
populations using small sample sizes. However,
this work majors on large sample sizes from three
populations which none of the researchers sighted
had written on. This justified the need for this work

1. REVIEW OF RELATED
LITERATURE

Gasana et al. (2024) conducted a study on
the moments of the likelihood-based discriminant
function, which led to quadratic discriminant
functions. They separately considered classification
into one of two known multivariate normal
populations with: known covariance matrix;
unknown covariance matrix. The two cases
depended on the sample size and an unknown
squared Mahalanobis distance. Since the exact
distributions were complicated to obtain, the

researchers established moments for the likelihood-
based discriminant functions to express the basic
characteristics of the respective distributions. The
study's results could be utilized in various
applications, such as: Edgeworth expansion, which
provided alternative approximations of the
distribution of misclassification errors. By
examining the moments of the likelihood-based
discriminant function, they contributed to a deeper
understanding of the underlying distributions and
paved the way for further research in discriminant
analysis.

Olusola and Onyeagu (2020) conducted a
research study on binary classification problems in
discriminant analysis using linear programming
methods. The study focused on assigning a new
object with multivariate features to one of two
distinct populations based on historical sample sets
from both populations. The researchers proposed a
linear discriminant analysis framework called
Minimised Sum of Deviations by Proportion
(MSDP) to model the binary classification
problem. In the MSDP formulation, they
minimised the sum of proportion of exterior
deviations subject to: group separation constraints;
normalisation constraint; upper bound constraints
on proportions of exterior deviations, sign
unrestriction and non-negativity constraints. They
adopted the two-phase method in linear
programming to generate the discriminant function
and constructed the decision rule for group-
membership prediction using the apparent error
rate. The performance of MSDP was compared to
existing linear discriminant models using a
previously published dataset on road casualties.
The results showed that MSDP was more
promising and well-suited for the imbalanced
dataset on road casualties.

Kanuti and Ngaruye (2024) conducted a
research on asymptotic results for expected
probability of  misclassifications in linear
discriminant analysis with repeated measurements.
They  proposed  approximations  for  the
misclassification probabilities in linear
discriminant analysis when the group means had a
bilinear regression structure. They checked the
accuracies of the proposed approximations
numerically by conducting a Monte Carlo
simulation. The key contributions were: they gave
a unified location and scale mixture expression of
the standard normal distribution for the linear
discriminant function; they obtained estimated
approximations of misclassification for the three
cases: unweighted case, weighted known
covariance matrix, and weighted unknown
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covariance matrix. The findings were: they found
that larger p (number of repeated measurements)
was better for classification when the covariance
matrix was known, also in the unweighted case;
they discovered that in the case where the
covariance matrix was unknown, they gained more
information if fewer repeated measurements were
used compared to when many repeated
measurements closer to the number of included
sample size were used. The research provided
valuable insights into the behavior of LDA with
repeated measurements and offered practical
guidelines for improving classification accuracy.

I1. RESEARCH METHODOLOGY
3.1 Data Collection

A cross- sectional study was conducted on
the Anthropometric status of school learners in
selected schools in Orumba North Local
Government Area of Anambra State.This study
used stratified random and simple random
sampling techniques respectively, designed for
school learners. Firstly, the schools were selected
randomly by stratified sampling method according
to socio-economic levels from among schools in
Orumba North Local Government Area which
represents one of the largest LGA in Anambra
State. Secondly, simple random sampling was

conducted in each strata of high socio-economic of
interest. A total of 350 school learners were
examined and equal allocation was maintained
according to gender that is 175 males and 175
females. With a rich cultural heritage, the area is
predominantly inhabited by the Igho people, with a
population of approximately 170,000 according to
2006 census. The heights of the learners were
measured with the help of calibrated meter rule to
the nearest 0.1cm. The learners were positioned
with their feet closed together and stand uprightly,
barefooted against a vertical measuring meter rule.
Once the correct position was achieved the
interviewer lowered the head plate until it just
touched the top of the learners head and while
maintaining this position, he/she were asked to
stand upright without lifting the heels. Other
variables (head circumference, shoulder width,
elbow height) were also measured, and recorded in
the nearest 0.1cm. The variables considered are
defined for the three populations (Nursery,
Primary, and Secondary) as follows:

Z;: Height

Z,: Head Circumference

Z3: Shoulder Width

Z,: Elbow Height

The data obtained from the schools are presented in
Table 3.1 (See Appendix A).

3.2 Proposed Method of Estimating Probabilities of Misclassification Via LDA
Let xy i=1,2,3; j=1,2,3; k=1,2,3 are to be independent samples of sizes n;, n, and n3 frt(r]])Jopulation
T4, T, and T3. To estimate the apparent probabilities of misclassification, we define

ni

. Y;

12E = -
=1

Where Y; = 1 if x;;

e g

Similarly,
nz

E d

21E — n,

j=1

is classified as belonging to 1, and Y; = 0, if x;; is classified as belonging to 7y, j =1, 2, 3

()

Where Eye is the apparent probability of misclassification when an observation from population 7, is
misclassified by ESD (Awogbemi and Onyeagu, 2019).
Where §; = 1 if x,; is classified as belonging to m; and §; = 0, if x,; is classified as belonging to m,, j =1, 2, 3

L
2 np (3)
Epzgp = ) —
13E £ n,
Where A; = 1 if xy; is classified as belonging to 73 and A; = 0, if Aj; is classified as belonging to 1y, j = 1,2, 3
[
ny

B;

Exsg = o
=7

(4)
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Where B; = 1 if xy; is classified as belonging to w5 and B; = 0, if x; is classified as belonging to 1, j = 1,2, 3

..y
n3
G
E3ip = o~
=1 °

Where C; = 1 if x; is classified as belonging to m; and C; = 0, if x3; is classified as belonging to 116

... N3
n3
D;

n
=1

E32E -

55: 1,23

Where D; = 1 if x3; is classified as belonging to 1, and D; = 0, if x3; is classified as belonging to s, j = (@ 3

..o N3

Following the same procedure, for normal distribution classification rule for the purpose of comparison thus:

Eion = Z,-nilz—i
Exn = Z]n:zl;f_;
Ezn = 2?221:_;
Eisn = Z,-nilf—i
Esin = Z,—rfl:—;
Eson = Z?jlf—;

Where: E;,yis the apparent probability of
misclassification ~ when  observation  from
population  myis  misclassified by  normal
distribution (ND) classificatory rule.

E,i1yis the apparent probability of
misclassification ~ when observation  from
population 7, is misclassified by ND classificatory
rule (Awogbemi and Onyeagu, 2019).

Exn IS the apparent probability of
misclassification ~ when  observation  from

U]
®)
9)
(10)
(11)
(12)

population 1, is misclassified by ND classificatory
rule.

Also Espy is the apparent probability of
misclassification ~ when  observation  from
population 15 is misclassified by ND classificatory
rule.

Exn IS the apparent probability of
misclassification ~ when observation  from
population 5 is misclassified by ND classificatory
rule.

3.2.1MODIFIED CLASSIFICATION RULES FOR NORMAL DISTRIBUTION (UNIVARIATE)VIA

LDA
Let the probability density function of x inm; (i=1, 2, 3) be
fix) =% 13n= exp[—%(%)z],—oo <x<owi=123

3.2)

If 6 is the mean of the observation x and Hy: 6 = p; Vs Hy: 6 = py = ps, then the likelihood when pi< po< a.

_ f1(x) _ 5;)3_3 x—piN2 1 x—pagn 1
= R, - Pty )T+ )4
1 x—h 1 x—p 1 x—u
I'== 24 24 = 2 _
S D ()

-1

ﬁ[?ﬂf — (g +uy +uz)l (U —py — 1)
1 y—

=[x =3 G+ + 1)) (Y

The result in equation (3.20a) is the
discriminant function from adjusted Anderson’s
classification statistic (w) when the distributions in
the three populations are univariate normal with
equal variance but different means (Sedransk, and
Okamato, 1971).

1
3

7] (3.2.0)

(3.2.0b)

According to the Neyman and Pearson
lemma cited by Rao, (1965), we reject H, if L<k
where K is a constant.

Following equation (3.20) and the decision rule
made, we specify the classification rule as follows:
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Classify x as members of myif w>0 and or
classify x as member of 7, if w < 0 and or classify x
Emifw<0

Classify x as members of m; if w <0 and or
classify XEm; if w < 0 (3.2.1)

The rule stated in equation (3.21) reduces to;
Classify x E my if x < g(lh + Uy +u3)
Classify x E m, if x > %(IM + Uy +u3)
Classify x E m3 if x > %(ul + Uy +U3)
(3.2.2)

Similarly, when p; > u, > u; the classification
rule becomes

Classify x E mz if x < %(#1 +up; +u3)
Classify x E m, if x < %(#1 + Uy +u3)

Classify x Emy if x > %(ul + Uy + u3z)
(3.2.3)

The rules in equations (3.2) is made when
Uy > pp; > pz and are known. But when the
parameters pq, iy, 4z are unknown, they are to be
estimated from the sample sizes of n; for m, n,
form, and n; for w3 by Xx;,x,and x3. The
classification rule becomes:

Classify x € m, if x <2725 3 o3 <%,
(3.2.4)
Similarly;

- . X1 +xy +X: —
Classify x € m, if x > 72275

) x1 < Ez < E3
(3.2.5)
In the similar way;

- . X1 +xp +X: —
Classify x € msif x > 275

) x1 < yz < y3
(3.2.6)

3.2.2 MODIFIED CLASSIFICATION RULE FOR EDGEWORTH SERIES DISTRIBUTION (MESD)

(UNIVARIATE) VIA LDA
Let the probability density function of population r;be;

fi(x) = [1 il 03] ® ("—”) —w<x <ooi=123 (3.2.7)
When p; < p, < us, the likelihood Ratio (LR) is now
__Ai®
. f2(0)f3(x)
—r1-[|A3_|(*X=H1 X—H1\3 X—H1
L= A3{1 [Za ( )+[§3_( ) }(P( ) (328)

O ) T2 (), 1l T o)

By implication, equation (3.28) becomes;
Aexp [——(i)z]
T Bexp[— CL2)?] Rexp[— L2
x—u A x—u 3
where A = [1- (55) (%) + (55) (%) ]
X—U2 A3 X—U2
=01-(5) () + (55 (7)31
X—p3 A3\ (x—K3
R=[1-(35) () +(5) () ]
According to Neyman and Pearson Lemma,
We reject Hy if
L<K =InL< k
Takingk =1 = InL <0
Then we reject x € my if

_1pxmmng 1 x—p2y2 1 x—p3y2
InA 2{ - } InB+2{ . }.InR+2{ - }* <o
)<o

Equation (3.34) reduces to

In (;;R) + [x _ (#1+#32 +#3)] (yl —yaz —u3

(3.2.9)

(3.3.0)
(3.3.1)
(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

From equation (3.35) the classification rule will now be: when p; < p, < us

Classify x as element of 7, if
A
L (—) +W >0
" \Br
or classify x € my Lfln( )+W >0
classify x as element m,if

(3.3.6)
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Ln (BiR)+Wso

and
classify x € m3if

n (&)+w <0

BR
Whenp; > u, > u3
Classify x € my if In (;;R)
Classify x € m, if In (éiR)
and

. . A
Classify x € w3 if In (ﬁ) -W<o0

-W>0
-WwW<o0

When the parameters uy, u,, Uz are
unknown, they are to be estimated by xi,x,, X3
respectively and substituted in equation (3.41)
before classification starts.

In the method of the comparisons of errors
of misclassification using MESD and MND

Aexp[-3(=21)']
1

5 CED2]. Rexp|

Classify x € my if
Bexp|

=5

Ao |31

22 Rexp[— 32 =
1rx—p1)?

Aexp [_E(T) ]

CF221. Rexp [ (L7

also

classify x € my if Py

exp [~
and

classify x € 3 if Py

xp [—3

T <1

or classify x € m, if In (;éR) +W<0 (3.3.7)

(3.3.8)

(3.3.9)
(3.4.0)

(3.4.1)

classification rules, and data generated from the
MESD, we would investigate by empirical method,
the effect of applying normal classification rule
(likelihood ratio) when the distribution is MESD.
Thus the classification rule for MESD is left in the
form; when y; < u,, < p3 (Chun’g’anda 1976)\

(3.4.2)

(3.4.3)

(3.4.4)

Where A and B remain as defined earlier in equation (3.30), (3.31) and (3.32)

The normal classificatory rule when py < p, < s, is

. , g+
classify x € m; if x < (%)

. . o+
also classify x € m, if x > (%)
and

. . Hup+
Classify x € 73 if x > (%)

3.3 PROPOSED METHOD OF ESTIMATING
PROBABILITIES OF MISCLASSIFICATION
VIA QDA

Let xp  i=1,23;j=1,23 k=123be
independent samples of sizes ny,n, and n; from
population m;, m, and 3. To estimate the apparent
probabilities of misclassification, we define.

QDA Classification Rule
Eizg

ni

(3.4.5)

Where Z; = 1 if x;; is classified as belonging to
and Z; = 0, if x;; is classified as belonging to my, j
= 1, 2, 3. n;

Similarly,

Erpg

nz

_ Z i
=
where Ejq is the apparent probability of
misclassification when an observation from
population m, is misclassified by QDA.

Where 6; = 1 if x,; is cléSs#fell as belonging to
and 6; = 0, if x,; is classified as belonging to m, j

= 1,2,3 e o
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Ei39 Following the same procedure, for normal
n1 @ distribution classification rule for the purpose of
= Z_J comparison thus: (3.4.8)
. n]. _ nq Yj
j=1 . . e . Epn = Z,-=1n_
Where a; = 1 if x;; is classified as belonging to m; ! (352)
and a; = 0, if o; is classified as belonging to 7y, j o
=1,2,3....n ,
E330 1 Bain = 2;211%
n; s (3.53)
=N — ym B
= . . - _ (3.5.4)
Where @; =1 if x,; is classified as belonging to Ey = 3" Aj
m3 and @; = 0, if x,; is classified as belonging to 13N ™ &j=1p,
my,j=1,2,3 ....n
5 ? (3.5.5)
s ns G
5], Ezin = ijla
=) (3.5.0) (3.5.6)
j=1 3 E _ an &
Where §; = 1 if x3; is classified as belonging to 32N 7 Aj=1y,
and §; = 0, if x3; is classified as belonging to 3, ] (3.5.7)
=1,2,3....n3 Where:
E B
32%3 EIZN! EZIN! E23N! E13N! E31N and E32N are def'ned
_ @ similarly to the QDA clagsification rule.
e It should be noted that QDA classification rule uses
i=

Where w; =1 if x3; is classified as belonging to
7, and w; = 0, if x3; is classified as belonging to
m3,j=1,2,3....n3

a quadratic discriminant function, which takes into
account the covariance matrix of each population,
whereas the LDA classification rule uses a linear
discriminant  function, which assumes equal
covariance matrices across populations.

3.3.1 MODIFIED CLASSIFICATION RULES FOR NORMAL DISTRIBUTION (MULTIVARIATE)

USING QDA

Let the probability density function of X in 7, (i=1,2,3)be:

1 1 _
fiWFWem[—E(x—yi )= (x - g )} (35.8)

where X is a p-dimensional vector, Hj is the mean vector, zi is the covariance matrix, and ‘Zi‘ is the

determinant of Zi .

If 0 is the mean of the observation X and Ho: 6 = py vs. Hy: 8 = pp = g, then the likelihood ratio when p;< pp<

Us:
f1(x)

(0% f5(0)

L=exp| -~
® -3

Taking the logarithm and simplifying:

T A B [t S| R

2
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o0(0) == 2y =) 2 =)o 55 4
The result in equation (3.27) is the discriminant function from QDA.

Classification Rule:

Classify X as members of 7y if w> 0 (3.5.9)
Classify X as members of 1, if w < 0 and A> A, (3.6.0)

Classify X as members of mg if w < 0 and A, > Aq (3.6.1)

where:

w=(x— )" 2 7= )= (x= 1) 257 = 1) (3.6.2)
Ay == )" 2y (0= )= (0= p13)" 257 x = 15 (3.6.3)
Ay ==, ) 25 M x = pa )= (k= 13)" 25 7H k= 115 (3.64)

When the parameters: ,Ul, ,U2 , ,U3, 21, 22 , and 23 are unknown, they are estimated from the sample sizes of

n, for w4, n, for m,, and n; for 7.

Classification Rule becomes:

Classify X e m, if

XU X = 2p B Tk Sy > XS, X =2y Sy X gy B, (365)
Classify X e m, if

-1 To -1 To -1 -1 Te -1 To -1

Classify X € m if
T -1 T -1 Te -1 T -1 Te -1 Te -1

Replace H; with Xi and Zi with Si (sample covariance matrix) for estimated parameters.

Note: QDA assumes different covariance matrices for each population, whereas LDA assumes equal covariance
matrices.

3.3.2 MODIFIED CLASSIFICATION RULE FOR EDGEWORTH SERIES DISTRIBUTION (MESD)
USING QDA

Let the probability density function of population ;be:
A: X—Hj -
f.(x) = [1 - §D3] ® (T“),—oo <x<wi=123 (3.6.8)
A X — L
fi(x)=[1-2D3p T o<x<o0,i=12,3 (3.6.9)
6 o
where ¢ is the standard normal density function.

When < pp< pg, the likelihood ratio (LR) is:

DOI: 10.35629/5252-0702442456 [Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal  Page 449



’/\E International Journal of Advances in Engineering and Management (IJAEM)

e Volume 7, Issue 02 Feb. 2025, pp: 442-456 www.ijaem.net
IJAEM

_ f,(x)
f (X) x f5(X)

{{_}X—ﬂﬁ+(X—fﬁ}4?X—M)ﬂ

_ O o (o2

_{%_(X—ﬂﬁ+KX—§Q}4?X—ﬂﬁJ]{%_(X—ﬂQ+}X—5ﬁ}4?x—ﬂﬁ]}
o o o o o o

(3.7.0)
By implication, equation (3.80) becomes:
1( (=) )|
Aexp| —— /”1}
2 o
L= _ = (3.7.1)
1 (= 1))’ 1 (- )Y’
Bexp —[Zj Re xp| - = 3}
2 o 2 o

where A, B, and R are defined in e(;uations (3.82), (3.83), and (3.84).

[ 3

A X— A X—
A=|1— 3 1 n 3 1 79
(203 o ] (60‘3J[ o (3.72)

: A X—u A X—u 3

B=|1— 3 2 n 3 2 3.73
(203 o J (603 J( o (3.7.3)

i A X— A X—u 3

R=|1-| =2 314+ = 3 (3.7.4)
20 o 60 o

These expressions represent the coefficients of the Edgeworth Series Distribution (ESD) for each population ;,
where:

- 13 is the skewness parameter
- O s the standard deviation
- Hj is the mean of population T;

- X is the observation
These coefficients are used in the likelihood ratio and classification rules for ESD.
Taking the logarithm and simplifying:

|n(L)—|n(iJ_l (x=4) 2+1 (X=13) 2+1 -u) ) [ 2 To-m)]
= BR 2 o 2 o 2 o 60‘3 o

! —u)T T A )P

{6033 }{(X Gﬂz)} _{6;3 }{(X O_ﬂ3)} 575

Classification Rule:
Classify Xas an element of m; if In(L) > Oor
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Classify Xe m; if In(A/BR) +W >0

Classify Xas an element of m, if In(L) < Oor
Classify X€ m, if In(A/BR) +W <0

Classify Xas an element of 3 if In(L) < Oor
Classify X€ 3 if IN(A/BR) +W <0

(3.7.6)

(3.7.7)

(3.7.8)

where W =[x — ((4 + £ + #22) 1 )1ty — p12 — 125) 1 &)

When py> po> pa:

Classify x € m; if In(A/BR) —-W >0
Classify x € mp if IN(A/BR)-W <0
Classify x € m3 if In(A/BR) —-W <0

(3.7.9)
(3.8.0)
(3.8.1)

When the parameters: Hq, Uy, Hq are unknown, they are estimated by )71, XZ] )?3 respectively.

Comparison with Normal Classification Rule:
Classify X € my if x < ((zey + 22, + 125)13)
Classify X € mp if x> ((¢, + 22, + 225)13)
Classify X € m3 if x > ((z2, + 22, + 225)13)

(3.8.2)
(3.8.3)
(3.8.4)

It should be noted that QDA takes into account the covariance matrix of each population, whereas LDA assumes
equal covariance matrices. MESD is used to model non-normal data.

V.

RESULTS OF ANALYSIS AND DISCUSSION

Table 4.1: Optimum Probabilities of Misclassification and Errors of Misclassification for LDA

Optimum Probabilities of Misclassification
Population | Population 11 Population 111 Total
0.00185 0.01130 0.01315
3.71786x10
Errors of Misclassification
Population | Population 11 Population 111
Total
0 0.04857 0
0.04857

The result in Table 4.1 shows the optimum
probability of misclassification for each population
as well as the errors of misclassification for LDA.
The optimum probability of misclassification for
population lis very low (0.00185), indicating that
the model is highly accurate in classifying
population | observations. The error of
misclassification for population 1 is 0, which means
that the model correctly classified all population |
observations.The  optimum  probability  of
misclassification for population Il is slightly higher
(0.01130), indicating that the model is still accurate
but slightly less so than for Population I. The error
of misclassification is 0.04857, which means that

the model misclassified approximately 4.86% of
Population Il observations.

The optimum probability of
misclassification of Population Il is extremely low

(3.71786x10 49) , indicating that the model is

highly accurate in classifying Population Il
observations.The error of misclassification is 0,
which means that the model correctly classified all
Population 11l observations. Hence, the results
suggest that the model is highly accurate in
classifying observations for all three populations,

with Population 1 and Population 1ll, having
virtually no errors and Population 11, having a small
error rate. In addition, the total optimum
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probability of misclassification (0.01315) suggests
that the model has a relatively low probability of
misclassifying observations across all populations.
The total error of misclassification (0.04857)
indicates  that the  model  misclassifies

approximately 4.86% of the observations across all
populations. Hence; in overall, these metrics
suggest that the model performs well in classifying
observations, with a low probability of
misclassification and a low error rate.

Table 4.2: Optimum Probabilities of Misclassification and Errors of Misclassification for QDA

Optimum Probabilities of Misclassification
Population | Population 11 Population 111 Total
0.00687 0.02395 _ 0.03082
2.13445x10%
Errors of Misclassification
Population | Population 11 Population 11
Total
0 0.03714 0
0.03714

The result in Table 4.2 shows the optimum
probability of misclassification for each population
as well as the errors of misclassification for QDA.
The optimum probability of misclassification for
population lis very low (0.00687), indicating that
the model is highly accurate in classifying
population | observations. The error of
misclassification for population I is 0, which means
that the model correctly classified all population |
observations.The  optimum  probability  of
misclassification for population Il is slightly higher
(0.02395), indicating that the model is still accurate
but slightly less so than for Population I. The error
of misclassification is 0.03714, which means that
the model misclassified approximately 3.71% of
Population Il observations.

The optimum probability of
misclassification of Population 111 is extremely low

(2.13445x10737) | indicating that the model is

highly accurate in classifying Population Il
observations.The error of misclassification is 0,
which means that the model correctly classified all
Population 11l observations. Hence, the results
suggest that the model is highly accurate in
classifying observations for all three populations,
with Population | and Population I1ll, having
virtually no errors and Population 11, having a small
error rate. Furthermore, the total optimum
probability of misclassification (0.03082) suggests
that the model has a relatively low probability of
misclassifying observations across all populations.
The total error of misclassification (0.03714)
indicates  that the  model  misclassifies
approximately 3.71% of the observations across all
populations. Hence; in overall, these metrics
suggest that the model performs well in classifying
observations, with a low probability of
misclassification and a low error rate.

Table 4.3:Summary of Multiple Metrics Statistics between LDA and QDA

LDA QDA

Pop I Pop Il Pop Il Pop | Pop Il Pop IlI
Confusion Pop | 350 17 0 350 13 0
Matrix Pop 11 0 333 0 0 337 0

Pop 1l 0 0 350 0 0 350

Statistics by | Sensitivity 1.0000 0.9514 1.0000 1.0000 0.9629 1.0000
Class Specificity 0.9757 1.0000 1.0000 0.9814 1.0000 1.0000
Accuracy 0.9838 0.9876
AUC-ROC 0.99992925170068 1

The result in Table 4.3 shows that for
accuracy and error rates, both LDA and QDA
achieve high accuracy rates, with QDA slightly
outperforming LDA (98.76% vs. 98.38%). This
indicates that both models are effective in
classifying the data. However, QDA's lower error

rate (1.24% vs. 1.62%) suggests it is more reliable.
For confusion matrices, QDA's confusion matrix
shows fewer misclassifications (13 vs. 17)
compared to LDA. Specifically, QDA reduces
misclassifications between Population 1 and
Population 2, which is a common source of error.
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For ROC Curve and AUC-ROC, QDA's perfect
AUC-ROC score (1) indicates exceptional
discriminatory power. LDA's AUC-ROC score
(0.99992925170068) is also excellent but slightly
lower. This suggests QDA is better at
distinguishing between classes. For statistics by
class, both models demonstrate high sensitivity and
specificity for all classes. However, QDA shows
improved sensitivity for Population 2 (0.9629 vs.
0.9514), indicating better detection of this class.
Hence, QDA's superior performance across
multiple metrics suggests it may be more robust.
The results based on the extensive interpretation,
concludes that QDA appears to be the better model
due to its: Higher accuracy rate (98.76% vs.
98.38%); lower error rate (1.24% vs. 1.62%);
improved misclassification reduction; exceptional
discriminatory power (AUC-ROC = 1) and
enhanced sensitivity for population 2.

4.1 DISCUSSION OF FINDINGS

This study investigated the apparent and
optimum probabilities of misclassification for three
populations from real-life anthropometric datasets.
For LDA, the optimum probability of
misclassification for population lis very low
(0.00185), indicating that the model is highly
accurate in classifying population | observations.
The error of misclassification for population | is 0,
which means that the model correctly classified all
population | observations.The optimum probability
of misclassification for population Il is slightly
higher (0.01130), indicating that the model is still
accurate but slightly less so than for Population I.
The error of misclassification is 0.04857, which
means that the model misclassified approximately
4.86% of Population Il observations.The optimum
probability of misclassification of Population Il is

extremely low (3.71786x10 49) , indicating

that the model is highly accurate in classifying
Population Il observations.The error of
misclassification is 0, which means that the model
correctly classified all Population 111 observations.
Hence, the results suggest that the model is highly
accurate in classifying observations for all three
populations, with Population | and Population 111,
having virtually no errors and Population |1, having
a small error rate. Again, the total optimum
probability of misclassification (0.01315) suggests
that the model has a relatively low probability of
misclassifying observations across all populations.
The total error of misclassification (0.04857)
indicates  that the  model misclassifies
approximately 4.86% of the observations across all

populations. Hence; in overall, these metrics
suggest that the model performs well in classifying
observations, with a low probability of
misclassification and a low error rate. The results
of this study support the findings of Kanuti and
Ngaruye (2024) on asymptotic results for expected
probability of misclassifications in linear
discriminant analysis with repeated measurements
and Gasana et al. (2024) and on moments of the
likelihood-based discriminant function.The result
of this study is in disagreement with the findings of
Olusola and Onyeagu (2020) on binary
classification problems in discriminant analysis
using linear programming methods, and Nikita and
Nikitas (2020) on sex estimation using various
classification methods.

For QDA, the optimum probability of
misclassification for population lis very low
(0.00687), indicating that the model is highly
accurate in classifying population | observations.
The error of misclassification for population I is 0,
which means that the model correctly classified all
population | observations.The optimum probability
of misclassification for population Il is slightly
higher (0.02395), indicating that the model is still
accurate but slightly less so than for Population I.
The error of misclassification is 0.03714, which
means that the model misclassified approximately
3.71% of Population Il observations.The optimum
probability of misclassification of Population 11 is

extremely low (2.13445 ><10_37) , indicating that

the model is highly accurate in classifying
Population Il observations.The error of
misclassification is 0, which means that the model
correctly classified all Population 111 observations.
Hence, the results suggest that the model is highly
accurate in classifying observations for all three
populations, with Population | and Population 111,
having virtually no errors and Population 11, having
a small error rate. Furthermore, the total optimum
probability of misclassification (0.03082) suggests
that the model has a relatively low probability of
misclassifying observations across all populations.
The total error of misclassification (0.03714)
indicates  that the  model  misclassifies
approximately 3.71% of the observations across all
populations. Hence; in overall, these metrics
suggest that the model performs well in classifying
observations, with a low probability of
misclassification and a low error rate. The results
of this study support the findings of Kouamo et al.
(2020) who investigated QDA's performance in
image classification tasks, highlighting its
effectiveness and Li et al. (2020) whose work
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explored QDA's application in medical diagnosis,
demonstrating its accuracy.

The findings from objective two conclude
that for accuracy and error rates, both LDA and
QDA achieve high accuracy rates, with QDA
slightly outperforming LDA (98.76% vs. 98.38%).
This indicates that both models are effective in
classifying the data. However, QDA's lower error
rate (1.24% vs. 1.62%) suggests it is more reliable.
For confusion matrices, QDA's confusion matrix
shows fewer  misclassifications (13 vs. 17)
compared to LDA. Specifically, QDA reduces
misclassifications between Population 1 and
Population 2, which is a common source of error.
For ROC Curve and AUC-ROC, QDA's perfect
AUC-ROC score (1) indicates exceptional
discriminatory power. LDA's AUC-ROC score
(0.99992925170068) is also excellent but slightly
lower. This suggests QDA is better at
distinguishing between classes. For statistics by
class, both models demonstrate high sensitivity and
specificity for all classes. However, QDA shows
improved sensitivity for Population 2 (0.9629 vs.
0.9514), indicating better detection of this class.
Hence, QDA's superior performance across
multiple metrics suggests it may be more robust.
The results based on the extensive interpretation,
concludes that QDA appears to be the better model
due to its: Higher accuracy rate (98.76% vs.
98.38%); lower error rate (1.24% vs. 1.62%);
improved misclassification reduction; exceptional
discriminatory power (AUC-ROC = 1) and
enhanced sensitivity for population 2. The result of
this study is in line with the result of Kouamo et al.
(2020) who found that QDA outperformed LDA in
image classification tasks; Li et al. (2020) whose
work demonstrated QDA's superior performance in
medical diagnosis, mirroring the current study's
error rates (1.24% vs. 1.62%); Singh et al. (2022)
whose findings showed QDA's exceptional
discriminatory power, consistent with the current
study's AUC-ROC scores 1 Vs,
0.99992925170068); and Huang et al. (2020) who
compared LDA and QDA performance in
classification tasks and found QDA's superiority in
accuracy and AUC-ROC. On the other hand, Wang
et al. (2020) found LDA performed better in high-
dimensional data, contrasting with the current
study's findings.

V. CONCLUSION
This study focussed on estimating
probabilities of misclassification for three
populations via Edgeworth series distribution.Real-
life anthropometric dataset was used, consisting of

three populations of school learners and four
variates each (Height, Head Circumference,
Shoulder Width and Elbow Height).The study
concluded that, for the real-life dataset, the total
optimum probability of misclassification suggests
that the model has a relatively low probability of
misclassifying observations across all populations
whereas the total error of misclassification
indicates  that the  model  misclassifies
approximately 4.86% of the observations across all
populations for LDA, whereas it misclassifies
approximately 3.71% of the observations across all
populations for QDA. Hence; in overall, these
metrics concluded that the model performs well in
classifying observations with a low probability.
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