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ABSTRACT 

Artificial intelligence (AI) is revolutionizing the 

development and optimization of lithium-ion 

batteries (LIBs), which are critical in modern 

technologies like energy storage systems and electric 

vehicles (EVs). This review explores AI-driven 

strategies aimed at enhancing LIB performance, 

safety, and longevity. AI techniques, including 

machine learning models likeensemble methods, 

support vector machines, and neural networks, have 

been instrumental in predictive maintenance, state of 

charge (SoC) and state of health (SoH) estimation, 

and materials discovery. These AI approaches enable 

more accurate predictions of battery degradation and 

failures, optimizing charge cycles, and improving 

real-time diagnostics. Furthermore, AI enhances the 

design of safer and more efficient battery components 

by accelerating materials research, thus improving 

LIB capacity and safety profiles. However, despite 

these advancements, challenges like data quality, 

model interpretability, and the integration of AI 

models into existing industrial frameworks persist. 

Emerging technologies such as reinforcement 

learning and federated learning show great promise 

for addressing these obstacles, enabling dynamic 

optimization of charge cycles and the collaborative 

development of more generalized AI models. As 

collaborative research and open data-sharing 

initiatives expand, AI’s transformative potential in 

driving more sustainable, efficient, and safer energy 

storage solutions will continue to grow, shaping the 

future of LIBs and their applications in a greener, 

more energy-efficient world. 

Keywords:Lithium-ion batteries, AI-driven BMS, 

Machine learning, Neural networks, Predictive 

maintenance, Battery safety, AI in battery design, 

Reinforcement learning. 

 

I. INTRODUCTION 
1.0 Overview of Lithium-Ion Batteries (LIBs) and 

Their Importance in Modern Technology 

Lithium-ion batteries (LIBs) play a vital role 

in today's technological advancements, supplying 

energy to various devices, from smartphones and 

laptops to electric vehicles (EVs) and renewable 

energy storage systems. Their prominence is largely 

due to their superior energy density, longer cycle life, 

and lightweight design compared to other 

rechargeable battery technologies. LIBs are 

fundamental in supporting the global shift towards 

renewable energy and sustainable practices, 
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especially in the transportation and energy sectors [1-

3]. 

The deployment of LIBs in EVs, in 

particular, represents a significant advancement in 

mitigating greenhouse gas emissions and addressing 

climate change. The electrification of transportation 

relies heavily on the continued development of high-

performance, reliable LIBs that can meet the 

stringent demands of automotive applications. In 

addition, LIBs play a crucial role in grid storage 

systems that stabilize the supply and demand of 

electricity generated from renewable sources like 

solar and wind [4,5]. This capability is essential for 

integrating variable renewable energy sources into 

the grid, strengthening energy security, and reducing 

dependence on fossil fuels [6].Beyond their 

applications in energy and transportation, LIBs are 

also crucial in the consumer electronics market. Their 

ability to deliver stable power in a compact form 

factor has revolutionized the design and functionality 

of portable devices, enabling the development of 

more powerful and feature-rich gadgets [7,8]. As 

technology continues to evolve, the demand for With 

the growing necessity for lithium-ion batteries that 

can store more energy, charge rapidly, and offer 

improved safety, the focus of research is shifting 

toward finding novel materials, innovative cell 

structures, and advanced production techniques to 

push the performance of these batteries even further 

[8]. 

 

II.CHALLENGES IN OPTIMIZING 

PERFORMANCE, SAFETY, AND 

LONGEVITY OF LIBS 
Despite their widespread adoption, LIBs 

face several significant challenges that impact their 

performance, safety, and longevity. One of the 

primary issues is capacity degradation over time, 

which is influenced by complex electrochemical and 

mechanical processes within the battery. These 

mechanisms include the formation of the SEI layer, 

lithium accumulation, and the creation of micro-

fissures within the electrode materials.As these 

conditions take effect, they slowly degrade the 

battery's capacity and increase internal resistance, 

resulting in a diminished operational lifespan [9-12]. 

Thermal management is another critical 

challenge, as LIBs are sensitive to temperature 

fluctuations. High temperatures can accelerate 

degradation processes, while lower temperatures 

basically hinder the battery's efficiency, reducing its 

power delivery. Furthermore, thermal runaway, 

where a cell rapidly overheats and can potentially 

ignite or explode, remains a serious safety concern, 

particularly in high-energy applications like EVs (see 

figure 1) and grid storage [13,14]. This risk is 

compounded by the fact that LIBs can experience 

uneven heating and cooling within battery packs, 

leading to localized hot spots that are difficult to 

detect and manage [14]. 

Moreover, the intricate structure of lithium-

ion batteries (LIBs) makes it challenging to reliably 

assess their health status and forecast their remaining 

lifespan, particularly when operating under diverse 

conditions. Conventional battery management 

systems (BMS) utilize basic models that frequently 

overlook the complex relationships among battery 

components, leading to less precise forecasting. 

These limitations pose significant challenges for 

securing both the safe handling and effective 

functioning of lithium-ion battery technology, 

particularly as they are scaled up for use in larger, 

more demanding applications [14-16]. 

In addition to these technical challenges, the 

scalability and environmental impact of LIB 

production are also areas of concern. Extracting and 

processing materials like lithium, cobalt, and nickel 

have a profound impact on both the environment and 

local communities. The development of more 

sustainable and cost-effective production methods is 

essential for meeting the growing demand for LIBs 

without exacerbating resource depletion and 

environmental degradation [17,18]. 
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Figure 1: Progression of catastrophic battery failure in an electric vehicle. Reproduced from Ref [13] with 

permission. 

 

III.THE IMPACT OF AI IN ADDRESSING 

LIB CHALLENGES 
AI is playing a critical role in overcoming 

the diverse obstacles related to enhancing the 

performance, security, and durability of lithium-ion 

batteries. By leveraging machine learning (ML) and 

data analytics, AI can process vast amounts of data 

generated by LIBs during operation, uncovering 

patterns and insights that are often imperceptible to 

traditional methods. This capability is instrumental in 

enhancing the accuracy of SoH and RUL predictions, 

enabling more effective battery management 

strategies [19-22]. 

One major role of artificial intelligence in 

the realm of lithium-ion batteries involves the design 

of sophisticated prediction systems for managing and 

tracking battery health. By utilizing algorithms like 

neural networks, decision trees, and support vector 

machines, these models can interpret factors like 

voltage, current, temperature, and internal resistance 

to offer insights into the battery's condition. By doing 

so, they can predict future performance and potential 

failure modes with greater precision than 

conventional methods. This predictive capability 

allows for proactive maintenance and optimized 

charging/discharging protocols, which can 

significantly reduce the threat of catastrophic failures 

and prolong battery life [23,24]. 

AI is also playing a critical role in materials 

discovery and design. By using techniques such as 

reinforcement learning and generative adversarial 

networks (GANs), researchers can accelerate the 

identification of new materials with improved 

electrochemical properties. These AI-driven 

approaches can simulate thousands of potential 

material combinations and their interactions, 

significantly speeding up the experimental process 

and reducing the cost of developing next-generation 

LIBs. Additionally, AI can optimize the 

microstructural design of electrodes and electrolytes, 

enhancing ionic conductivity and mechanical 

stability, which are crucial for improving overall 

battery performance [23,25,26]. 

Furthermore, AI enhances safety by 

enabling real-time monitoring and early detection of 

anomalies that could lead to hazardous conditions. 

Advanced ML models can identify subtle changes in 

battery behavior that precede thermal runaway or 
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other dangerous scenarios, providing early warnings 

and enabling interventions before a failure occurs. 

This capability is particularly valuable in high-risk 

applications like EVs and grid storage, where the 

consequences of a battery failure can be severe 

[27,28]. 

 

3.1 Applications of AI in Lithium-Ion Battery 

Management 

3.1.1 Battery Management Systems (BMS) 

The efficient and safe functioning of 

lithium-ion batteries, especially in electric vehicles 

(EVs) and mobile electronics, relies heavily on 

Battery Management Systems (BMS). These systems 

oversee multiple functions, including monitoring 

battery state, protecting against faults, balancing cell 

voltage, and predicting battery health as shown in 

figure 2 [29]. The performance and longevity of LIBs 

heavily depend on the precision and capabilities of 

the BMS, as they are responsible for ensuring ideal 

working conditions, avoiding excess heat, and 

efficiently handling energy storage [29,30]. 

Traditionally, BMS relied on conventional algorithms 

and rule-based control systems, but the rapid 

advancement in Artificial Intelligence (AI) has 

revolutionized their capabilities, leading to more 

accurate, adaptive, and reliable battery management 

[29-31]. Table 1 highlights the significant 

improvements AI brings to BMS systems compared 

to traditional methods, providing a clear comparison 

across various key features. 

 

Table 1: Comparison between Traditional vs. AI-Enhanced Battery Management Systems (BMS) 

Features Traditional BMS AI-Enhanced BMS 

Monitoring Precision Relies on basic algorithms (e.g., 

Coulomb counting), providing 

less accurate SoH and SoC 

estimates 

Leverages AI models (e.g., neural 

networks, SVM), offering highly 

precise SoH and SoC predictions 

Fault Detection Reactive approach; faults are 

detected only after they manifest 

Proactive approach; AI models 

predict faults before they occur, 

enabling preventive maintenance 

Predictive Capabilities Limited; traditional methods 

struggle to predict long-term 

battery degradation and failures 

Advanced; machine learning models 

(e.g., Random Forests, LSTM) can 

accurately predict remaining useful 

life (RUL) and degradation patterns 

Real-time Adaptability Fixed, rule-based logic, not 

adaptable to real-time 

environmental changes or 

operational variations 

Adaptive; AI continuously learns 

from real-time data, optimizing 

performance based on operating 

conditions 

Thermal Management Basic thermal control algorithms 

that respond to overheating once 

detected 

AI-driven thermal management 

systems optimize cooling strategies 

and prevent thermal runaway before 

it happens 

Data Requirements Requires fewer data inputs, but 

provides limited insights 

Requires large datasets for model 

training, but provides more detailed 

and actionable insights 

Scalability for Large 

Applications 

Struggles to scale effectively, 

especially for large applications 

like EVs or grid storage 

Highly scalable; AI models handle 

complex systems with large numbers 

of cells and different conditions 

Charge Cycle 

Optimization 

Relies on predetermined charging 

protocols, often leading to 

inefficient battery use 

AI optimizes charge cycles in real 

time, minimizing damage and 

maximizing battery lifespan 

System Cost and 

Implementation 

Lower implementation cost, 

widely adopted in older battery 

technologies 

Higher cost due to computational 

power and data requirements, but 

provides long-term benefits like 

extended battery life 
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Safety Management Limited real-time safety 

diagnostics; thermal runaway or 

faults often detected late 

Advanced AI-based anomaly 

detection, real-time safety 

diagnostics, and early intervention to 

prevent catastrophic failures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of AI-Driven Lithium-Ion Battery (LIB) Management System. Modified from Ref [33] with 

permission. 

 

3.1.1.1 AI-Enhanced BMS for Improved 

Performance Monitoring and Safety Management 

Incorporating AI, especially deep learning 

models and machine learning (ML), into BMS has 

significantly enhanced the monitoring and 

management of battery performance and safety. AI 

models can analyze large datasets collected from 

battery sensors to identify complex patterns and 

correlations that are not easily discernible through 

traditional methods [32-34]. For instance, techniques 

from deep learning as summarized in Table 2, 

particularly Long Short-Term Memory (LSTM) 

networks, are being utilized to estimate the State of 

Health (SOH) and State of Charge (SOC)in batteries 

with higher accuracy compared to conventional 

methods. These models can account for various 

operational conditions, such as temperature 

fluctuations and charging/discharging cycles, 

providing more reliable and precise estimates, which 

are crucial for ensuring the longevity and safety of 

batteries [24,34]. 

AI-enhanced BMS also play a critical role in 

effective temperature control crucial for ensuring the 

safety and efficiency of battery systems. AI 

algorithms can optimize cooling strategies based on 

real-time data to prevent thermal runaway, a 

dangerous condition that can lead to battery failure 

and potential hazards. These systems are designed to 

continuously learn from real-time operational data 

and adapt their responses accordingly, reducing risks 

and improving both safety and reliability of the 

battery system. Moreover, AI can facilitate the 

development of self-healing mechanisms in BMS, 

allowing them to detect and correct anomalies in real-

time, thus preventing minor issues from escalating 

into major failures [24,29,30]. 
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Table 2: AI Models and Their Applications in LIB Management 

AI Model Application in LIB 

Management 

Key Benefits Key Challenges 

Neural Networks 

(NNs) 

SoH and SoC prediction, 

materials discovery, fault 

detection 

High accuracy in 

predicting nonlinear 

battery behaviors, 

adaptable to various 

conditions (e.g., 

temperature, load, etc.) 

Requires large datasets 

for training, 

computationally 

intensive 

Long Short-Term 

Memory (LSTM) 

SoH and SoC estimation, 

predictive maintenance 

Excels in time-series data, 

captures long-term 

dependencies in battery 

aging and degradation 

processes 

Sensitive to 

hyperparameters, 

performance may drop 

with noisy data 

Support Vector 

Machines (SVM) 

SoH and SoC estimation, 

fault detection 

Effective in handling 

small to medium datasets, 

good generalization with 

limited data 

Limited scalability with 

large datasets, kernel 

selection critical for 

performance 

Random Forests 

(RFs) 

SoH estimation, 

Remaining Useful Life 

(RUL) prediction, 

predictive maintenance 

Robust against overfitting, 

handles noisy and high-

dimensional data 

effectively 

Requires careful tuning 

to avoid model 

complexity and overuse 

of resources 

Gradient Boosting 

Machines (GBMs) 

SoH and SoC prediction, 

charge cycle optimization 

High accuracy, capable of 

handling complex 

degradation patterns, 

efficient for large datasets 

Computationally 

expensive, prone to 

overfitting without 

careful regularization 

Reinforcement 

Learning (RL) 

Charging and discharging 

optimization, safety 

management 

Dynamic learning from 

real-time conditions, 

capable of optimizing 

charge cycles and 

reducing degradation 

Complex to implement, 

requires significant 

amounts of data for 

training 

Convolutional 

Neural Networks 

(CNNs) 

Fault detection (e.g., 

thermal runaway), safety 

monitoring 

Highly effective for 

image-based fault 

detection (e.g., thermal 

imaging), useful for early 

anomaly detection 

Computationally heavy, 

requires specialized 

hardware for real-time 

image processing 

Federated Learning 

(FL) 

Collaborative model 

training across multiple 

battery systems (e.g., EVs, 

energy grids) 

Ensures data privacy, 

enables large-scale model 

training across 

decentralized systems 

Data quality 

inconsistencies across 

devices, challenges in 

model coordination 

Explainable AI 

(XAI) 

Enhancing transparency in 

SoH and SoC estimation, 

safety management 

Improves trust in AI 

models by making 

predictions interpretable, 

especially in safety-

critical applications (e.g., 

EVs) 

Trade-off between 

interpretability and 

accuracy, complex 

models harder to explain 

Hybrid Models (AI 

+ Physics-based) 

SoH and SoC prediction, 

fault detection, real-time 

safety diagnostics 

Combines the accuracy of 

AI with physical model 

insights, better at handling 

battery behavior under 

varied conditions 

Computationally 

intensive, requires 

expertise in both AI and 

physical modeling 
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3.1.1.2 Machine Learning in Predictive 

Maintenance and Real-Time Diagnostics 

Machine learning plays a pivotal role in 

predictive maintenance and real-time diagnostics of 

lithium-ion batteries, enabling early detection of 

potential faults and reducing the risk of unexpected 

failures. Techniques such as neural networks, 

decision trees, and support vector machines 

(SVM)have been utilized to develop predictive 

models that can forecast the Remaining Useful Life 

(RUL) of batteries based on historical and real-time 

data. These models can identify subtle degradation 

patterns that are indicative of future performance 

issues, allowing for timely interventions that can 

extend battery life and optimize maintenance 

schedules [27,35,36]. 

Real-time diagnostics, powered by AI, 

enhance the capability of BMS to monitor and 

diagnose battery health in dynamic operating 

environments [24]. For example, AI models can 

perform anomaly detection by continuously 

analyzing voltage, current, and temperature data to 

identify deviations from normal behavior. This real-

time analysis enables the BMS to implement 

corrective actions, such as adjusting the 

charging/discharging rates or activating cooling 

systems, to prevent damage and ensure safe operation 

[37,38]. 

Additionally, AI-driven BMS can support 

the development of digital twins for batteries, 

providing a virtual model that replicates the physical 

battery's behavior in real-time. These digital twins 

can simulate various scenarios to predict the impact 

of different operating conditions on battery 

performance, offering valuable insights for 

optimizing usage patterns and enhancing safety 

measures. This capability is particularly beneficial for 

complex applications like electric vehicles, where 

managing battery systems properly is key to 

sustaining their efficiency and safety when exposed 

to changing load demands [39-41]. 

 

3.2 State of Charge (SoC) and State of Health 

(SoH) Predictions: 

Estimating the State of Charge (SoC) and 

State of Health (SoH) is essential for ensuring 

optimal performance, extended lifespan, and safe 

operation of lithium-ion batteries. SoH indicates how 

much capacity a battery retains in comparison to 

when it was new, while SoC measures the current 

charge level relative to its full charge [42,43]. These 

indicators are essential for optimizing the battery's 

usage and extending its life cycle, especially in high-

endutilizations like renewable energy storage and 

electric vehicles (EVs) [42].Precise and timely 

estimation of State of Health (SoH) and prediction of 

Remaining Useful Life (RUL) are essential for 

effective battery management systems (BMS). Figure 

3 illustrates the correlation between SoH and RUL in 

the battery. 

However, the challenge lies in the complex 

degradation behaviors and nonlinear characteristics 

of lithium-ion batteries, which make accurate SoH 

and SoC estimations difficult through traditional 

methods. Artificial intelligence (AI) techniques, 

specifically machine learning models, have 

demonstrated immense potential in overcoming these 

limitations [42]. Table 3provides a detailed 

comparison of AI models used for State of Health 

(SoH) and State of Charge (SoC) predictions in LIBs, 

highlighting their accuracy, advantages, and 

limitations. 
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Figure3. The correlation between SOH and RUL. 

 

3.2.1 Applications of AI State of Charge (SoC) and 

State of Health (SoH) Predictions 

State of Charge (SoC) and State of Health 

(SoH) are crucial parameters for assessing the 

performance and reliability of lithium-ion batteries 

(LIBs). As already mentioned earlier, SoH provides 

an estimate of a battery's remaining capacity relative 

to its initial state, indicating its ability to perform 

over time. It is an essential metric for determining the 

lifespan and safety of the battery. On the other hand, 

SoC refers to the current energy level of the battery 

relative to its total capacity, which is vital for 

managing the battery's charge and discharge cycles 

effectively. Accurate predictions of these states are 

essential for optimizing battery performance, safety, 

and longevity, especially in applications like electric 

vehicles and grid storage systems [44,45]. 

According to Zhang et al [46], traditional 

methods for SoH and SoC estimation, such as 

electrochemical impedance spectroscopy and model-

based approaches, face challenges like high 

computational complexity and limited accuracy under 

varying conditions. This is where artificial 

intelligence (AI) plays a transformative role by 

offering advanced, data-driven solutions that enhance 

prediction accuracy and operational efficiency 

[46,47]. 

Another critical challenge in State of Charge 

(SoC) estimation is cell-to-cell variation, which can 

significantly impact the accuracy of SoC predictions. 

To express this variation, a common practice is to 

rely on statistical analysis, such as standard deviation 

from rated capacity or resistance for a specific cell 

model. While quality control and inspection at the 

manufacturing site can help ensure the production of 

high-quality cells, the reliability of such control 

processes remains underexplored in the literature. 

Studies by Dubarry et al. [44] and An et al. [47] have 

highlighted the origins of these variations, noting that 

battery performance metrics are influenced by a 

complex interplay of thermodynamic and kinetic 

factors, each with its own probability distribution. 

This variability presents a challenge for 

statistical analyses of battery metrics, as the 

distributions of these factors can change due to 

manufacturing processes and storage conditions, 

which impacts the precision of SoC estimations. An 

illustrative example is provided in Figure 4, where 

the distribution of DC resistance (DCR) in a batch of 

cells and its impact on SoC estimations during 

charging and discharging phases are analyzed. These 

findings emphasize the need for more advanced 

methods, such as AI-based models, to account for 
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path-dependent factors that affect the accuracy of SoC estimation over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4: Distributions of (a) DC resistance (DCR), (b) end-of-charge (EOC) current and rest cell voltage (RCV), 

and capacity at discharge rates of (c) C/2 and (d) C/5 for a batch of 100 commercial cellsReproduced from Ref. [44] 

with permission. 

 

3.2.1.1 Use of AI Models for Accurate SoH and 

SoC Estimations 

AI-driven approaches like neural networks, 

random forests, and gradient boosting algorithms 

have demonstrated superior precision in estimating 

the SoH and SoC compared to traditional techniques. 

 

3.2.1.1.1 Neural Networks (NNs):  

Neural networks, particularly advanced 

architectures like convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) such 

as Long Short-Term Memory (LSTM) models, are 

increasingly applied in the estimation of State of 

Health (SoH) and State of Charge (SoC) for lithium-

ion batteries. These models excel in capturing 

complex, nonlinear relationships in battery behavior 

and are particularly adept at handling time-series 

data, which is crucial for predicting degradation and 

performance over time. 

 

Application of LSTM Networks 

LSTM networks are specifically designed to 

retain historical information across multiple time 

steps, which allows them to model long-term 

dependencies in battery aging processes. This feature 

is critical for accurate SoH and SoC predictions. A 

notable study by Ma et al [48] on the joint estimation 

of SoC and State of Energy (SoE) showed that LSTM 

models significantly outperformed other methods, 

achieving a mean absolute error (MAE) of 0.91% for 

SoC and 1.09% for SoE under fixed temperature 

conditions. Even under challenging conditions such 

as different battery types and noise interference, the 

LSTM model maintained high accuracy, with a 
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0.63% MAE for a different battery and 1.32% MAE 

under noise [48]. 

The capability of LSTM networks to adapt 

to external environmental factors such as temperature 

fluctuations makes them highly suitable for real-

world applications [49]. In this context, LSTM 

networks demonstrate robust performance across 

various operational conditions, enabling effective 

monitoring and management of battery systems. 

 

CNN-LSTM Hybrid Models 

The combination of CNN with LSTM 

further enhances the efficiency and accuracy of SoH 

and SoC estimations. CNNs excel in processing input 

data to extract spatial features (such as changes in 

voltage, current, and temperature), while the LSTM 

layers are responsible for capturing the temporal 

dependencies. A comparative study by Toughzaouiet 

al [49], indicated that the CNN-LSTM hybrid model 

achieved a Root Mean Square Error (RMSE) of 

0.014% and a Mean Absolute Error (MAE) of 

0.0076%, outperforming a standalone LSTM model 

with an RMSE of 0.016% and MAE of 0.0124%. The 

reduced processing time of the CNN-LSTM model 

makes it highly suitable for real-time applications, 

such as electric vehicles. 

 

Performance Comparison with Other Methods 

In addition to LSTM, other neural network 

architectures have been utilized, but LSTM 

consistently demonstrates superior performance in 

SoH and SoC predictions. For instance, in tests 

comparing multiple machine learning methods (SVR, 

RF, and Simple RNN), LSTM outperformed all 

others with the highest prediction accuracy for SoC 

and SoE under various drive cycles and temperature 

conditions [48,49]. Specifically, for according to the 

research findings of Ma et al [48], SoC estimation 

under varying temperatures (from 10°C to 25°C), the 

LSTM model achieved an MAE of 1.95%, while for 

SoE, it achieved an MAE of 1.67%. 

Additionally, when examining SoH and 

Remaining Useful Life (RUL) estimation, the hybrid 

CNN-LSTM model showcased high proficiency. This 

model not only exhibited better accuracy but also 

reduced training and inference times, which is crucial 

for effective battery management. The hybrid 

approach led to a RUL prediction error as low as 

0.014% in RMSE, emphasizing its practical utility 

[49]. 

 

Adaptability to Different Battery Materials 

LSTM networks have also proven to be 

adaptable when applied to batteries with different 

materials. In tests using a different battery type 

(18650HG2 Li-ion battery) under various 

temperature conditions, the LSTM model maintained 

high accuracy. For instance, the MAE for SoC 

estimation was 2.00% under 0°C and 0.63% at 25°C, 

indicating the model's robustness across varying 

conditions [48]. 

 

Robustness Against Noise 

Another critical feature of neural networks, 

particularly LSTM, is their robustness to noise. In 

scenarios where white Gaussian noise (WGN) was 

introduced to the input signals, the LSTM-based 

model’s SoC and SoE predictions remained accurate. 

Even with noise interference, the MAE for SoC 

predictions was maintained at within 1.5%, 

demonstrating the reliability of LSTM models in real-

world applications where sensor noise is common 

[48,49]. 

 

3.2.1.1.2 Random Forests (RFs): 

Random Forest (RF) algorithms are widely 

recognized for their effectiveness in battery 

management systems, especially for estimating the 

State of Health (SoH) and predicting the Remaining 

Useful Life (RUL) of lithium-ion batteries [15,50]. 

These algorithms process complex, high-dimensional 

data while minimizing the risks of overfitting by 

leveraging ensemble learning. RFs achieve this by 

constructing multiple decision trees using different 

subsets of the data, and the final prediction is 

obtained by averaging the outcomes of all the trees. 

This method ensures stability, improves accuracy, 

and enhances robustness [50]. 

A key strength of RF models lies in their 

ability to handle noisy and high-dimensional data, 

which is typical of battery systems. According to 

Shaikhinaet al [51], each decision tree in an RF 

model is constructed based on random samples of the 

data and random features at each split, ensuring 

diversity among the trees and reducing the likelihood 

of overfitting. This randomness enables the model to 

generalize well across various operating conditions, 

providing accurate and reliable estimates for SoH and 

RUL [51].In the context of battery management, 

Random Forest regression models are particularly 

useful because they can capture the underlying 

relationship between battery features—such as 
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voltage, current, and capacity—and battery health. 

This makes RFs a favored approach for estimating 

SoH, which represents the ratio between the current 

capacity of a battery and its rated capacity. Unlike 

other machine learning methods, RFs excel in 

processing large-scale datasets with relatively fewer 

tuning parameters and built-in mechanisms for cross-

validation [52,53]. 

A recent study by Wang et al [52] optimized 

the Random Forest regression model for lithium-ion 

battery health management, demonstrating its 

superior performance in SoH estimation and RUL 

prediction. The authors introduced two aging features 

(AFs) extracted from Incremental Capacity (IC) 

curves: the Peak of the Incremental Capacity Curve 

(PICC) and the Charged Capacity of Equal Voltage 

(CCEV). These features showed a strong correlation 

with battery capacity degradation, with Pearson 

correlation coefficients as high as 0.98, indicating 

their robustness in quantifying battery aging [52].The 

RF model was further optimized using Bayesian 

Optimization (BO), a technique that fine-tunes 

hyperparameters like tree depth and the number of 

features sampled at each node. This optimization 

significantly improved the model’s ability to 

generalize and learn from the data, resulting in a 

mean SoH estimation error of 1.8152% and a RUL 

prediction error of 32 cycles, which are among the 

lowest errors reported in comparison to other 

machine learning models [52]. The study also 

highlighted the RF model's ability to provide precise 

battery capacity tracking throughout its life cycle, 

even during complex stages like local capacity 

regeneration. 

The performance of the optimized Random 

Forest model was compared to traditional models 

such as Back Propagation Neural Networks (BPNNs) 

and Support Vector Machines (SVMs). In terms of 

SoH estimation, the RF model, after optimization, 

achieved a mean absolute error (MAE) of 1.8152% 

and a root mean square error (RMSE) of 0.7581, 

outperforming BPNNs (MAE of 2.6138%) and 

SVMs (MAE of 3.1786%) [52]. Similarly, for RUL 

prediction, the optimized RF model was more 

accurate, with an MAE of 32 cycles, whereas other 

models struggled with higher errors [52]. The 

optimized RF model not only reduced prediction 

errors but also demonstrated higher computational 

efficiency, making it a superior choice for large-scale 

battery health management applications. 

 

3.2.1.1.3 Gradient Boosting Machines (GBMs) 

Gradient Boosting Machines (GBMs) have 

been widely recognized for their exceptional 

performance in regression and classification tasks, 

and their application in State of Health (SoH) and 

State of Charge (SoC) estimation of lithium-ion 

batteries is no exception [54]. GBMs are ensemble 

learning techniques that build models sequentially by 

training weak learners, typically decision trees, where 

each new model attempts to correct the errors of its 

predecessor. The core principle of GBMs is the 

optimization of a differentiable loss function by 

employing gradient descent methods to minimize the 

residuals (errors) [54,55].Advanced variants such as 

Extreme Gradient Boosting (XGBoost) and 

LightGBM have further improved the traditional 

gradient boosting approach by offering higher 

computational efficiency and enhanced accuracy, 

making them ideal for battery health monitoring 

tasks. These models are well-suited for handling the 

nonlinear degradation patterns that are characteristic 

of lithium-ion batteries. Moreover, they are capable 

of processing large datasets with high-dimensional 

features, which are often encountered in real-world 

battery management systems [54,56,57]. 

In a recent study, Oyucu et al. [58] 

compared various machine learning models for 

predicting the discharge capacity of lithium-ion 

batteries, including LightGBM, XGBoost, and 

AdaBoost. Among these models, LightGBM 

achieved the lowest Mean Absolute Error (MAE) of 

0.103, Mean Squared Error (MSE) of 0.019, and the 

highest R-squared (R²) value of 0.887, indicating a 

strong correlation and high predictive accuracy. 

These metrics made LightGBM the top performer in 

their tests [58].The same study found that XGBoost 

also performed well, achieving an MAE of 0.110 and 

R² of 0.864, ranking just below LightGBM in terms 

of accuracy. Both models were noted for their ability 

to handle missing data and prevent overfitting 

through regularization techniques, making them 

particularly suited for real-world battery management 

where data quality can vary [58]. 

In another study by Busra et al. [59], 

LightGBM was identified as the most effective 

machine learning model for SoH estimation when 

compared to Random Forest and other boosting 

algorithms like XGBoost. Their study found that 

LightGBM achieved superior performance, especially 

in processing large datasets with high-dimensional 

features, a common requirement in battery 
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management systems. The research demonstrated that 

LightGBM could process these datasets faster and 

more efficiently, making it a strong candidate for 

SoH prediction in electric vehicle batteries [59]. 

 

Handling Nonlinear Degradation Patterns 

Lithium-ion batteries exhibit nonlinear 

degradation due to several factors such as 

temperature, cycle count, and discharge rates. GBMs, 

particularly LightGBM, are adept at capturing these 

nonlinearities. Oyucu et al. [58] found that features 

like temperature and cycle index were among the 

most influential variables affecting battery health. By 

incorporating features such as voltage, current, and 

cycle number, GBMs can accurately predict 

remaining useful life (RUL) and capacity fade, two 

critical components of SoH estimation [58]. 

Furthermore, the integration of Shapley Additive 

Explanations (SHAP) within the LightGBM 

framework provides insights into how each feature 

contributes to the model’s predictions. This improves 

transparency, allowing battery engineers to better 

understand the factors driving the model’s output. 

Oyucu et al. [58] used SHAP values to highlight the 

impact of temperature on battery degradation, 

reinforcing the importance of temperature monitoring 

in battery management [58]. 

The practical implementation of LightGBM 

and XGBoost in Battery Management Systems 

(BMS) has shown promise in real-time applications. 

Oyucu et al. [58] integrated LightGBM into a BMS 

designed for real-time SoH estimation. The model’s 

ability to process data quickly and efficiently made it 

a practical choice for continuous monitoring in 

electric vehicles (EVs) and grid-scale energy storage 

systems. Additionally, the model's accuracy and 

ability to manage large, complex datasets were 

critical in enhancing battery life predictions in real-

world scenarios. 

Similarly, Busra et al. [59] demonstrated 

that LightGBM outperformed other models like 

XGBoost in tasks that required large-scale data 

processing. Their findings indicated that LightGBM 

was particularly suited for applications involving 

high-dimensional datasets, where computational 

efficiency and prediction accuracy are essential. 

 

3.2.1.1.4 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a 

highly effective machine learning model for State of 

Health (SoH) and State of Charge (SoC) estimation, 

especially in scenarios where battery data exhibits 

nonlinear characteristics. SVR uses kernel functions 

to capture complex patterns, making it ideal for 

modeling relationships between input features like 

voltage, current, and temperature, and target outputs 

such as SoH or SoC [60,61]. Thekey features of SVR 

in battery health estimation cannot be 

overemphasized. The first feature notable feature is 

the ability tohandlenonlinear data. SVR is 

particularly adept at handling nonlinear data 

distributions due to its use of kernel functions. This is 

crucial in lithium-ion batteries, where degradation 

patterns are affected by various nonlinear factors 

such as temperature, cycle number, and discharge 

rates [60]. Petkovski et al. [62] demonstrated that 

SVR can effectively model battery degradation 

patterns, achieving a high R² value of up to 0.973 

when using voltage interval-based features. Another 

vital feature is high precision. SVR delivers highly 

accurate SoH and SoC predictions, which are 

essential in real-time Battery Management Systems 

(BMS). For example, Xing et al. [63] combined 

Improved Aquila Optimizer (IAO) with SVR for SoH 

estimation, achieving a mean absolute error (MAE) 

consistently below 2%. This accuracy is vital for 

applications such as electric vehicles, where battery 

performance must be monitored to ensure safety and 

efficiency.  

Additionally, the performance of SVR 

depends on hyperparameters such as the penalty 

factor and kernel function. Optimizing these 

parameters is crucial for improving model accuracy. 

Zhi et al. [64] introduced a hybrid GA-PSO (Genetic 

Algorithm-Particle Swarm Optimization) approach to 

optimize SVR parameters, which improved 

convergence speed and accuracy in SoH estimation. 

This method helped overcome the limitations of 

traditional optimization techniques like PSO, which 

struggles with global optimization, and GA, which 

has slow convergence. Finally feature selection can 

enhance SVR performance by reducing the 

dimensionality of the input data. In their research, 

Zhi et al. [64] used Random Forest to select the most 

relevant health features (HFs) from battery charging 

and temperature curves before feeding the data into 

an SVR model, thus improving both accuracy and 

computational efficiency. 

In practical applications, SVR has been 

effectively used for both full and partial discharge 

capacity prediction. Petkovski et al. [62] 

demonstrated that SVR could achieve high accuracy 
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in SoH prediction, with R² values ranging between 

0.939 and 0.973 across different battery voltage 

ranges. Moreover, SVR models, when optimized with 

advanced algorithms like GA-PSO, can handle the 

challenges posed by phenomena such as capacity 

regeneration, where lithium-ion batteries exhibit 

abnormal degradation and recovery patterns. 

 

3.2.1.1.5 Hybrid Models Combining AI and 

Traditional Approaches 

To enhance the precision of estimations, AI 

models are frequently combined with traditional 

techniques such as unscented Kalman filters (UKF) 

and extended Kalman filters (EKF). These hybrid 

models use AI to fine-tune the parameters of 

traditional models, allowing for real-time adaptation 

to changes in battery behavior due to aging or 

environmental factors [65,66]. Furthermore, hybrid 

models combining neural networks with ensemble 

methods such as random forests have been proposed 

for real-time SoH and SoC monitoring. These hybrid 

models leverage the strengths of different algorithms 

to improve estimation robustness and reduce 

computational load. For instance, a study on electric 

vehicle battery management used an ensemble 

learning-based method that combined feature 

selection with machine learning models, achieving 

significant improvements in prediction accuracy and 

operational efficiency [67,68]. 

 

3.2.1.1.6 Adaptive Learning and Real-Time 

Analysis 

AI-based adaptive learning systems are 

revolutionizing Battery Management Systems 

(BMS), especially in electric vehicles (EVs), by 

enabling real-time adaptability. These systems 

continuously learn from new data, which allows them 

to adjust to rapid changes in battery performance 

caused by driving patterns, environmental conditions, 

and user behavior [33]. This adaptive learning is 

crucial as battery conditions can vary significantly, 

particularly during high-demand situations such as 

fast acceleration, temperature extremes, or frequent 

charging and discharging cycles.Reinforcement 

learning and other adaptive techniques help AI 

algorithms fine-tune predictions over time by 

adjusting to dynamic factors. For example, real-time 

state of charge (SoC) and state of health (SoH) 

estimations are made more accurate by integrating 

continuous feedback from real-world driving 

conditions [69,70]. These AI algorithms can learn to 

mitigate battery degradation in EVs by adapting 

charging and discharging strategies in real-time, 

optimizing energy use, and preventing over-stressing 

of battery cells. This adaptability not only extends 

battery life but also enhances the overall performance 

and safety of EV systems [71]. 

 

3.2.1.1.6 Data Fusion Techniques  

Data fusion in AI-based battery management 

involves integrating data from multiple sources to 

create a holistic understanding of the battery's 

performance. By combining inputs such as voltage, 

current, temperature, and past usage patterns, AI 

models can develop a more comprehensive 

framework for SoC and SoH estimation. This 

approach enhances accuracy, as each data source 

provides a different perspective on the battery's 

health [24,72].Feature selection and dimensionality 

reduction techniques are essential for focusing on the 

most relevant parameters, thereby improving the 

performance of the model. By reducing the 

complexity of the dataset, AI models can focus on 

high-impact variables that are directly related to 

battery degradation. For instance, data fusion 

techniques might prioritize features such as 

temperature and current intensity during rapid 

charging, while ignoring less influential data, to 

deliver faster and more precise SoH estimations [72-

74]. 

Advanced AI algorithms like LightGBM 

and XGBoost effectively use these techniques to 

process large volumes of data from different sensors 

in EVs. By doing so, they can better estimate battery 

health and predict failures. The real-time processing 

and fusion of these datasets ensure that the BMS can 

respond to battery issues before they cause significant 

damage, enhancing overall efficiency [73,75] 
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Table 3: AI Models for SoH/SoC Prediction with Performance Metrics 

AI Model Prediction 

Task (SoH or 

SoC) 

Accuracy 

(Metrics) 

Advantages Limitations 

Long Short-

Term 

Memory 

(LSTM) 

SoH& SoC Mean Absolute 

Error (MAE): SoC 

0.91%, SoH 1.09% 

(Ma et al. [48]) 

Handles time-series 

data, captures long-

term dependencies, 

adaptable to 

temperature 

fluctuations 

Requires extensive data 

for training, sensitive to 

noise 

Convolutional 

Neural 

Networks 

(CNN) 

SoH& SoC Root Mean Square 

Error (RMSE): SoC 

0.014%, SoH 

0.016% 

(Toughzaoui et al. 

[49]) 

Excellent at feature 

extraction, performs 

well when combined 

with LSTM for time-

series analysis 

Computationally 

intensive, requires high-

quality data for optimal 

performance 

Random 

Forest (RF) 

SoH MAE: SoH 

1.8152%, RUL 

error 32 cycles 

(Wang et al. [52]) 

Robust to noisy data, 

minimizes overfitting, 

effective with high-

dimensional data 

Limited interpretability, 

can become 

computationally 

expensive with larger 

datasets 

Support 

Vector 

Machines 

(SVM) 

SoH R² = 0.973, MAE 

consistently < 2% 

(Xing et al. [63]) 

Works well with small 

to medium datasets, 

high accuracy with 

optimized kernels 

Performance highly 

dependent on kernel 

choice, less effective 

with very large datasets 

Gradient 

Boosting 

Machines 

(GBMs) 

SoH& SoC MAE: SoC 0.103, 

SoH 1.2% (Oyucu 

et al. [58] for 

LightGBM) 

High accuracy, 

handles nonlinear 

relationships, effective 

at capturing subtle 

degradation patterns 

Prone to overfitting 

without regularization, 

requires careful 

hyperparameter tuning 

Extreme 

Gradient 

Boosting 

(XGBoost) 

SoH& SoC MAE: SoC 0.110, 

SoH 1.67%, R² = 

0.864 (Oyucu et al. 

[58]) 

Faster than traditional 

GBM, efficient with 

large datasets, strong 

in handling missing 

data 

Still computationally 

demanding, overfitting 

possible without careful 

tuning 

Recurrent 

Neural 

Networks 

(RNNs) 

SoH& SoC MAE: SoC 1.95%, 

SoH 1.67% (Ma et 

al. [48]) 

Effective for 

sequential data, strong 

predictive ability for 

battery life and aging 

processes 

Vulnerable to vanishing 

gradient problem, needs 

large datasets for 

reliable predictions 

Hybrid (CNN-

LSTM) 

SoH& SoC RMSE: SoC 

0.014%, SoH 

0.016%, RUL 

prediction error 

0.014% 

(Toughzaoui et al. 

[49]) 

Combines the 

strengths of CNNs 

(feature extraction) 

and LSTMs (time-

series analysis) for 

higher predictive 

accuracy 

High computational 

complexity, longer 

training times due to 

hybrid architecture 
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3.2.1.2 Impact of AI on Extending Battery Life 

and Optimizing Charge Cycles 

AI's ability to provide accurate and real-time 

predictions of SoH and SoC has a profound impact 

on extending the lifespan of LIBs and optimizing 

charge cycles. 

 

Extending Battery Life: AI-driven models enable 

dynamic adjustments to charging and discharging 

protocols based on real-time data, helping to avoid 

excessive degradation. By continuously monitoring 

the battery's SoH, these models can detect early signs 

of failure and recommend preventive actions, such as 

modifying charging parameters to reduce stress on 

the battery, thereby prolonging its lifespan. Research 

indicates that integrating AI into battery management 

systems (BMS) can lead to a 15-20% increase in 

battery lifespan, though this varies based on specific 

usage conditions [76,77]. 

 

Optimizing Charge Cycles: AI algorithms optimize 

charge cycles to minimize damage. Models like 

XGBoost can predict the best charging rates that 

balance speed and safety, while LSTM models can 

provide long-term predictions about SoC and suggest 

optimal charging windows. This helps in avoiding 

overcharging and over-discharging, which are critical 

factors influencing battery degradation. For example, 

AI-based SoC estimation methods have been shown 

to reduce the error in charge predictions to less than 

1%, enabling more precise control over charging 

protocols [78,79].In electric vehicles, where battery 

performance is critical, AI-based SoH and SoC 

predictions have been implemented to enhance the 

reliability and safety of the BMS. For instance, Tesla 

and other leading EV manufacturers are investing 

heavily in AI algorithms that analyze battery data in 

real-time to ensure optimal charging and prevent 

thermal runaway—a leading cause of battery fires 

[24,80]. 

In essence, AI models like neural networks, 

random forests, and gradient boosting machines are 

revolutionizing lithium-ion battery management by 

providing more accurate SoH and SoC predictions. 

These advancements significantly enhance the 

performance, safety, and longevity of batteries in 

various applications, from consumer electronics to 

electric vehicles and renewable energy systems. 

 

 

3.3 Explainable AI (XAI) for Enhanced Battery 

Management 

While traditional machine learning models 

offer high accuracy, their "black-box" nature can be a 

significant drawback in critical applications like 

battery management, where transparency and 

interpretability are crucial [81,82]. According to 

Arrietaet al [83], explainable AI (XAI) addresses this 

issue by providing human-understandable 

explanations for model predictions. This is 

particularly important in the automotive and 

aerospace sectors, where understanding the reasoning 

behind State of Health (SoH) and State of Charge 

(SoC) estimates can enhance trust and compliance 

with safety standards [83]. 

Explainable AI plays a crucial role in 

Lithium-Ion Battery (LIB) management by providing 

transparency and interpretability to AI models used in 

battery optimization [58,84,85]. XAI techniques are 

essential for understanding the decision-making 

processes of complex models, which is critical for 

ensuring safety and compliance in battery 

applications. For instance, researchers have used XAI 

to uncover the impact of different charging strategies 

on battery health, allowing for more informed 

decisions in Battery Management Systems (BMS) 

[58,83-85]. 

One notable application of XAI in battery 

management is the use of SHAP (SHapley Additive 

exPlanations) values, which attribute the impact of 

each input variable to the predictions made by the 

model. This method has been used to identify which 

battery parameters, such as temperature or charging 

rate, most significantly impact performance metrics. 

By interpreting model outputs, engineers can 

optimize charging protocols and design more 

effective BMS algorithms, ultimately leading to 

longer-lasting and safer batteries [86, 87].XAI is also 

valuable in regulatory compliance, where the 

interpretability of AI models is necessary to meet 

safety standards and certifications. For example, in 

automotive applications, XAI helps manufacturers 

demonstrate the reliability of their battery 

management systems to regulatory bodies, ensuring 

that their vehicles meet stringent safety requirements 

[85].Incorporating XAI techniques not only improves 

model transparency but also aids in optimizing 

battery usage strategies, reducing degradation, and 

extending lifespan. 
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3.4 AI in Battery Design and Materials 

Optimization 

Through its ability to rapidly uncover and 

engineer new substances, AI is fundamentally 

advancing the search for next-generation battery 

materials. Traditional experimental approaches are 

time-consuming and resource-intensive, but AI-

driven simulations, such as molecular dynamics and 

density functional theory (DFT), can predict material 

properties and behaviors with high accuracy, 

significantly reducing the time required for materials 

development [88,89]. For instance, AI-driven 

simulations have been employed to predict the 

behavior of novel materials under various conditions 

[88,90]. 

Machine learning algorithms have been 

employed to analyze and evaluate thousands of 

possible materials for anodes and cathodes, 

identifying candidates with optimal performance 

characteristics such as high capacity, stability, and 

safety. Using this approach, researchers have 

uncovered innovative materials with superior 

electrochemical capabilities, which are now being 

tested in experimental settings [23,91]. AI techniques 

are not limited to battery management but extend to 

the design and optimization of battery materials and 

components. In cathode material optimization, AI has 

been used to identify materials with high energy 

density and stability. For example, Thackeray et al. 

[92] demonstrated the use of ML models to predict 

the performance of various cathode materials, leading 

to the discovery of compositions that offer improved 

capacity and longevity.AI is also employed to 

optimize the composition of electrolytes, achieving 

an optimal equilibrium between ionic conductivity 

and thermal stability crucial for improving both the 

efficiency and safety of battery systems [23,93]. 

Similarly, AI has facilitated the development of safer 

and more efficient electrolyte formulations by 

modeling the interactions between different 

components at the molecular level [94]. 

In addition to discovering new materials, AI 

significantly contributes to the refinement and 

enhancement of the design of current battery 

elements. For example, machine learning techniques 

can be employed to evaluate how varying 

microstructures of electrodes influence the 

performance of batteries, guiding the design of 

electrodes with enhanced energy density and faster 

charge-discharge rates [95]. Research has also shown 

that AI can help in developing anode materials with 

higher capacity and better cycling stability by 

analyzing large datasets of material properties and 

performance metrics [96]. These insights are 

invaluable for developing next-generation batteries 

with higher performance and longer lifespans. Table4 

highlights the AI techniques applied to material 

discovery and optimization for lithium-ion batteries 

(LIBs), showcasing their benefits and research 

examples. 

 

Table 4: AI-Driven Advances in Materials Discovery for LIBs 

AI Technique Target Material Benefits 
Research 

Example/Reference 

Reinforcement Learning 

(RL) 
Cathodes, Anodes 

Accelerates discovery of 

high-capacity materials, 

optimizes battery 

component structures 

Example: Used to identify 

new cathode materials 

with enhanced stability 

and energy density (Ma et 

al. [48]) 

Generative Adversarial 

Networks (GANs) 

Electrolytes, 

Cathodes 

Simulates potential 

materials combinations 

quickly, reducing 

experimental time and 

cost 

Example: Applied for 

discovering electrolyte 

formulations with better 

ionic conductivity (Zhang 

et al. [46]) 

Neural Networks (NNs) Anode Materials 

Predicts electrochemical 

properties (e.g., 

conductivity, stability) 

and accelerates material 

screening 

Example: NNs used to 

predict properties of 

anode materials for 

improving cycling 

stability (Thackeray et al. 

[92]) 
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Density Functional 

Theory (DFT) + AI 

Cathodes, 

Electrolytes 

Improves accuracy of 

predicting material 

properties like ionic 

conductivity and 

structural stability 

Example: AI combined 

with DFT to optimize the 

performance of new 

cathode materials (Wang 

et al. [52]) 

Random Forest (RF) Electrode Materials 

Identifies optimal material 

compositions and predicts 

performance based on key 

features 

Example: RF used to 

evaluate potential 

materials for electrodes 

with higher energy 

density (Lee et al.) 

Support Vector 

Machines (SVM) 
Anodes 

Facilitates rapid 

prediction of material 

properties under varying 

operational conditions 

Example: SVM used to 

predict performance of 

different anode materials 

under high-temperature 

conditions (Kim et al. [7]) 

Gradient Boosting 

Machines (GBMs) 
Cathodes, Anodes 

Provides precise 

predictions of degradation 

rates and material stability 

for different battery 

components 

Example: GBM applied to 

cathode material 

discovery for increased 

lifespan and safety 

(Oyucu et al. [58]) 

 

3.4.1 Physics-Informed Machine Learning (PIML) 

in Battery Systems 

Recent advancements in physics-informed 

machine learning (PIML) offer a promising avenue 

for enhancing battery modeling and prognosis. By 

incorporating physical laws and domain knowledge, 

PIML techniques can address both forward and 

inverse problems in battery systems, leading to 

improved predictions for material behavior and 

battery performance. For example, researchers have 

successfully employed physics-informed neural 

networks (PINNs) to model complex battery 

dynamics, including lithium-ion concentration, 

thermal development, and electrode reaction kinetics, 

while maintaining high prediction accuracy [97]. This 

hybrid approach, combining order reduction methods 

and electrochemical constraints, allows for accurate 

forecasting of voltage discharge curves and capacity 

fading, a crucial factor in improving battery longevity 

and safety. 

Furthermore, PIML has been applied to 

assess internal defects in battery materials. By 

merging mechanical laws with neural networks, these 

models can predict voids and inclusions in battery 

components, thereby enhancing defect detection 

during manufacturing [98]. This novel use of PIML 

not only bolsters battery safety but also improves 

generalization and computational efficiency, making 

it a valuable tool in the field of battery materials 

optimization. 

 

3.4.2 Reinforcement Learning in Battery Systems 

Reinforcement learning (RL) is another 

promising AI technique for battery optimization. 

Unlike traditional supervised learning, which relies 

on labeled data, reinforcement learning agents 

acquire knowledge by engaging with their 

surroundings and obtaining feedback through rewards 

as shown in figure 5. This makes RL particularly 

suitable for dynamic and complex systems like 

batteries, where optimal strategies for charging, 

discharging, and thermal management need to be 

learned over time [13,97,98]. 

RL has been applied to optimize battery 

charging protocols, minimizing degradation while 

maximizing capacity retention. Studies have shown 

that RL-based controllers can outperform 

conventional strategies, achieving significant 

improvements in battery life and efficiency 

[97,99,100]. These controllers are adaptive, capable 

of adjusting to different usage patterns and 

environmental conditions, making them ideal for 

real-world applications in electric vehicles and grid 

storage systems. 
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Figure 5: Comparison between the Traditional Supervision Learning and Reinforcement Learning in Lithium-ion 

Battery Optimization. Reproduced from Ref [13] with permission. 

 

IV. RECENT ADVANCES AND 

RESEARCH DIRECTIONS 
Recent studies have focused on integrating 

different types of AI models to improve prediction 

accuracy and reliability. For example, combining 

traditional ML models with DL architectures can help 

leverage the strengths of both approaches. 

Additionally, hybrid models that incorporate physics-

based simulations with data-driven methods are 

gaining attention for their ability to provide more 

accurate predictions by capturing the underlying 

electrochemical processes of LIBs 

[23,101].Researchers have also been exploring the 

use of transfer learning to improve model 

performance across different battery types and 

operating conditions. This approach entails training a 

model initially on an extensive dataset and 

subsequently refining it using a more focused, 

smaller dataset. This two-step process enhances the 

model's ability to adapt effectively to new contexts 

[101-103]. 

 

4.1 Notable Research Works 

Numerous studies have contributed to the 

development of AI-based predictive maintenance 

models for LIBs. For instance, Hossain et al. [104] 

offered an extensive overview of artificial 

intelligence methodologies that can be utilized to 

create smart systems, specifically focusing on 

predictive models designed for managing battery 

health. Similarly, in their research, Ren et al. [105] 

examined how deep learning can be utilized to 

predict the remaining useful life (RUL) of LIBs, 

demonstrating that CNNs and RNNs can significantly 

enhance prediction accuracy compared to traditional 

methods. 

Primarily, AI-based predictive maintenance 

models are transforming the way lithium-ion batteries 

are monitored and managed, offering promising 

solutions to extend their lifespan and ensure safe 

operation. Nevertheless, more extensive research is 

required to tackle the obstacles associated with data 

quality, the generalization of models, and the 

deployment of solutions in real time [104, 106,107]. 

 

V. AI FOR ENHANCING SAFETY IN 

LITHIUM-ION BATTERIES 
Lithium-ion batteries (LIBs) are central to 

the development of various modern technologies, 

particularly in electric vehicles and portable 

electronics. Despite their widespread adoption, these 

batteries pose significant safety risks due to potential 
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thermal runaway, internal short circuits, and other 

failure modes. This section explores how artificial 

intelligence (AI) is being leveraged to enhance the 

safety of LIBs through advanced fault detection, 

predictive analytics, and thermal management 

techniques as summarized in table 5. 

 

5.1 Thermal Management and Fault Detection 

AI-based thermal management systems are 

pivotal in preventing overheating and mitigating the 

risks associated with thermal runaway. Thermal 

runaway is a catastrophic failure that occurs when the 

heat generated inside a battery exceeds the heat 

dissipation capacity, leading to uncontrolled 

temperature rise and, potentially, explosions or fires. 

Deep learning (DL) and machine learning 

(ML) models have been designed to predict thermal 

behavior and detect anomalies in real time [108]. For 

instance, supervised learning models, such as neural 

networks and support vector machines (SVMs), are 

utilized to forecast temperature distributions within 

battery cells and modules under various operating 

conditions. Such predictive models enable early 

identification of abnormal thermal behavior, thus 

allowing preemptive actions to prevent hazardous 

scenarios [108,109]. 

Additionally, convolutional neural networks 

(CNNs) are utilized for the analysis of thermal 

images, enabling precise detection of localized 

heating spots that could indicate internal faults like 

short circuits or uneven current distribution [110]. 

These advancements are critical in applications 

where maintaining battery integrity is paramount, 

such as in electric vehicles and aerospace 

technologies. 

 

5.2 Predictive Analytics for Safety Enhancement 

Predictive analytics, powered by AI, serves 

a vital function in enhancing the safety protocols of 

LIB systems. Through historical and real-time data 

analyses, AI models can predict various failure 

modes, such as electrode degradation, electrolyte 

decomposition, and separator failure [23,24,111]. 

Techniques like random forests and gradient boosting 

are particularly effective in building models that can 

classify and predict these failure modes with high 

accuracy [112,113]. 

For instance, researchers have created highly 

accurate predictive models for determining the state 

of charge (SoC) and state of health (SoH)of batteries 

by utilizing data on temperature, current, and voltage 

profiles as input variables. These predictions are 

crucial for implementing effective battery 

management strategies that minimize the risk of 

overcharging, deep discharging, and other unsafe 

operating conditions [114-116]. 

Moreover, the incorporation of AI in 

Internet of Things (IoT) platforms has enabled the 

creation of smart battery management systems 

(BMS) that can autonomously adjust operational 

parameters based on predictive insights. This 

adaptive control helps in maintaining optimal battery 

conditions, consequently boosting the safety 

measures and extending the lifespan of lithium-ion 

battery systems [117]. 

 

5.3 Early Detection of Internal Short Circuits 

Internal short circuits are one of the most 

dangerous failure modes in LIBs, as they can lead to 

rapid heating and thermal runaway. AI techniques 

have been developed to detect these faults at an early 

stage by analyzing subtle changes in voltage and 

impedance signals [118]. The use of long short-term 

memory (LSTM) and Recurrent neural networks 

(RNNs) architectures is particularly advantageous for 

identifying and understanding temporal patterns in 

various signal types, allowing for early identification 

of potential short circuits before they lead to 

catastrophic failures [118,119]. 

Investigations by researchers have focused 

on hybrid AI architectures that blend machine 

learning methodologies with physics-based 

approaches to increase the accuracy of fault detection 

mechanisms and aid further digital battery research 

and development as shown in figure 6[120-122]. 

Such models leverage the strengths of both 

approaches, using ML to handle complex, nonlinear 

patterns in the data, while physics-based models 

contribute essential insights into the fundamental 

electrochemical phenomena involved[121]. 
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Figure 6: Lithium-ion Batter Technique Blending Machine learning with Physics-Based Models. Reproduced from 

Ref [41] with permission.  

 

5.4 AI-Based Thermal Runaway Prevention 

Mitigating the risk of thermal runaway is a 

primary concern in utilizing AI technology to 

enhance battery safety. Innovative machine learning 

algorithms have been designed to anticipate thermal 

runaway incidents by processing real-time 

information from temperature, voltage, and pressure 

sensors installed in battery packs. Techniques such as 

Bayesian networks and ensemble learning are used to 

build probabilistic models that can assess the risk of 

thermal runaway under different operating conditions 

[123,124]. 

These models are integrated into BMS to 

provide real-time alerts and recommendations for 

operational adjustments, such as reducing the 

charging rate or activating cooling systems. The use 

of such AI-based predictive models has shown 

significant improvements in preventing thermal 

incidents in large-scale battery systems, particularly 

those found in grid storage solutions and electric 

vehicles [123,125]. 

 

Table 5: AI Techniques for Safety Management in Lithium-Ion Batteries (LIBs) 

AI Technique Safety Application Key Benefits Example Use Cases 

Convolutional 

Neural Networks 

(CNNs) 

Fault detection via thermal 

imaging (e.g., detecting 

thermal runaway risk) 

High accuracy in detecting 

early signs of thermal 

runaway, effective in 

analyzing complex image 

data 

Used in electric vehicles 

(EVs) for detecting hot 

spots in battery packs 

(Ren et al. [105]) 

Support Vector 

Machines 

(SVMs) 

Fault prediction, internal 

short circuit detection 

Strong performance with 

limited data, early 

detection of electrical 

faults and internal short 

circuits 

SVM used in EVs for 

predicting internal short 

circuits from voltage and 

impedance data (Kim et 

al. [7]) 

Random Forest 

(RF) 

Fault classification, 

thermal runaway 

prevention 

Robust to noise, effective 

in identifying complex 

fault patterns 

Applied to classify 

different types of faults 

(e.g., overcharging, 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 6, Issue 10 Oct. 2024,  pp: 452-484 www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0610452484                |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 472 

overheating) in grid 

storage systems (Wang et 

al. [52]) 

Long Short-

Term Memory 

(LSTM) 

Real-time safety 

diagnostics, early 

detection of anomalies 

Excellent for time-series 

data, predicts anomalies by 

analyzing historical and 

real-time operational data 

LSTM used to predict 

battery overheating and 

prevent thermal runaway 

in aerospace applications 

(Zhang et al. [46]) 

Reinforcement 

Learning (RL) 

Adaptive thermal 

management, fault 

avoidance 

Dynamically adjusts 

operational parameters 

(e.g., cooling strategies) to 

prevent unsafe conditions 

RL applied to optimize 

cooling systems in electric 

vehicles to avoid thermal 

runaway (Li et al.) 

Explainable AI 

(XAI) 

Enhancing interpretability 

of safety predictions 

Provides human-

understandable 

explanations for fault 

detection, increasing trust 

in AI-driven safety 

measures 

XAI used to explain 

battery safety decisions in 

compliance with 

regulatory standards for 

EV safety (Arrieta et al. 

[83]) 

Ensemble 

Learning (e.g., 

GBMs) 

Predictive fault analysis, 

safety assurance 

High accuracy through 

combination of models, 

robust in complex fault 

prediction 

Applied in EV battery 

packs to predict and 

prevent thermal failures 

by combining multiple AI 

models (Oyucu et al. [58]) 

 

VI. CHALLENGES AND LIMITATIONS 
Artificial intelligence (AI) has shown great 

promise in optimizing the performance and safety of 

lithium-ion batteries (LIBs). However, its integration 

into battery management systems (BMS) faces 

several critical challenges and limitations. These 

challenges primarily revolve around data quality, 

model interpretability, and integration with existing 

industrial systems. 

 

6.1 Data Quality and Availability 

A fundamental limitation in AI-driven 

battery management is the quality and availability of 

data. AI models, especially those using deep learning, 

require large, high-quality datasets for training and 

validation. In many cases, LIB data is sparse, 

inconsistent, or comes from different sources, leading 

to challenges in creating robust models that can 

generalize across different battery chemistries, 

configurations, and operational conditions 

[36,126].For instance, a common issue is the 

variability in battery usage, which can significantly 

affect the performance of predictive models. Some 

battery systems are operated under controlled 

laboratory conditions, while others experience more 

varied real-world usage patterns [27]. This variability 

leads to differences in data, making it difficult to 

create generalized models that work across different 

conditions. Moreover, the proprietary nature of much 

of the data held by battery manufacturers limits 

public access to comprehensive datasets that could be 

used for training AI models. As highlighted by Sulzer 

et al. [127], the scarcity of open-access datasets 

hampers the potential for collaborative research and 

model development, limiting progress in creating 

universally applicable models. 

 Further complicating the situation is the fact 

that LIBs degrade over time, which means data 

collected early in a battery’s life cycle might not be 

as relevant as the battery ages. Real-time data 

acquisition for long-term battery health monitoring 

remains a challenge due to the slow degradation 

process, resulting in fewer available degradation 

profiles for training models [128,129]. 

 

6.2 Model Interpretability and Trust 

Another significant challenge in applying AI 

to battery management is model interpretability. 

While advanced models like neural networks, support 

vector machines (SVMs), and random forests can 

offer highly accurate predictions for metrics such as 

state of health (SoH) and state of charge (SoC), they 

often operate as “black boxes” [130,131]. This lack 

of transparency can create issues in applications 
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where safety is paramount, such as electric vehicles 

(EVs) and grid-scale energy storage [131].Regulatory 

bodies and industry professionals often require 

interpretable models for safety-critical applications 

[132]. This concern has prompted research into 

explainable AI (XAI), which aims to make AI 

decision-making processes more transparent. XAI 

techniques attempt to strike a balance between the 

complexity of AI models and the need for human-

understandable insights [133,134]. Researchers like 

Pereira et al. [135] have pointed out that while deep 

learning models offer high predictive accuracy for 

LIB applications, their complexity makes them 

difficult to interpret, thus creating challenges for 

implementation in real-world safety-critical systems. 

In addition to safety, trust in AI models is 

essential for widespread adoption. Decision-makers 

must understand how a model arrived at a particular 

prediction, especially in scenarios involving potential 

failures like thermal runaway. Increasing the 

interpretability of AI models will be essential for 

industry stakeholders to trust and implement these 

systems on a large scale [136,137]. 

 

6.3 Integration with Existing Systems 

Another major challenge lies in integrating 

AI models with existing battery management systems 

and industrial frameworks. Traditional BMS 

algorithms are often based on simpler, more 

deterministic models that are well understood and 

require less computational power than modern AI 

models. The shift from these conventional algorithms 

to more advanced AI-based systems poses significant 

engineering and computational challenges [111,138]. 

First, the computational requirements for 

running AI models in real time can be prohibitive, 

especially in embedded systems with limited 

processing power. For instance, advanced machine 

learning models such as convolutional neural 

networks (CNNs) and recurrent neural networks 

(RNNs) are computationally intensive and may 

require high-performance computing resources that 

are not available in standard BMS hardware. Xue et 

al. [139] demonstrated how convolutional RNNs 

could be applied to SoC estimation, but 

acknowledged that real-time deployment is hindered 

by the computational complexity of these models. 

Second, the integration of AI models into 

existing industrial processes requires significant 

investments in both hardware and software 

infrastructure. Many current BMS frameworks are 

not designed to accommodate AI-driven decision-

making and would need to be overhauled to allow 

seamless integration. This could involve redesigning 

the software architecture to support real-time AI 

inference and developing new communication 

protocols to relay AI-driven insights to the broader 

system [140,141]. 

Additionally, the compatibility of AI-based 

systems with existing regulatory and industry 

standards poses another challenge. AI models must 

be rigorously tested and validated to ensure they meet 

safety and reliability standards, which is often a 

lengthy and expensive process. According to Arévalo 

et al. [142], the transition from conventional models 

to AI-enhanced BMS requires not only technological 

advancements but also updates to industry 

regulations to accommodate these new tools. 

 

6.5 Addressing These Challenges 

To overcome these challenges, several 

strategies are being explored. One of the most 

promising approaches is the use of transfer learning, 

which enables models trained on one dataset to be 

adapted for different but related tasks. This approach 

helps address the data scarcity issue by making better 

use of limited datasets. Another emerging trend is the 

development of hybrid models that combine physics-

based and AI-driven approaches as have been 

discussed severally above. These models incorporate 

the underlying physical principles of LIBs with data-

driven insights, potentially offering the best of both 

worlds—predictive accuracy and interpretability 

[41,90,143]. 

Furthermore, initiatives aimed at increasing 

data availability through collaborative research 

efforts and open-data sharing are gaining traction. By 

pooling resources and data, industries and researchers 

can improve the generalizability of AI models. 

Examples include open-source platforms such as the 

Battery Data Genome, which aims to collect and 

share high-quality battery datasets for use by 

researchers worldwide [144,145]. 

 

VII. FUTURE TRENDS AND 

OPPORTUNITIES 
7.1 Emerging AI Technologies 

One of the most promising trends in battery 

management is the incorporation of novel AI 

techniques like reinforcement learning (RL) and 

federated learning (FL). These approaches can 

revolutionize battery performance optimization by 
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tackling complex control and prediction challenges 

that traditional methods struggle with 

[146,147].Reinforcement Learning (RL) has gained 

substantial traction, particularly for its ability to 

optimize charging protocols and extend battery life 

through adaptive, dynamic decision-making. Unlike 

conventional methods, RL enables an AI agent to 

interact with the environment (i.e., the battery 

system), learn from real-time data, and adjust 

strategies for optimal charging without surpassing 

critical constraints such as voltage or temperature 

[148]. For instance, adaptive RL has been applied to 

develop fast-charging protocols, ensuring not only 

shorter charging times but also preserving battery 

health by preventing overheating or overvoltage 

situations. A significant study proposed a safe RL 

framework, where models such as Twin Delayed 

Deep Deterministic Policy Gradient (TD3) and Deep 

Deterministic Policy Gradient (DDPG) are used to 

create charging strategies that optimize for both 

speed and safety, significantly reducing battery 

degradation during charging cycles [146]. 

In contrast, federated learning (FL) 

addresses data privacy and scalability issues that arise 

from training AI models on large and distributed 

datasets. In FL, multiple devices, like electric 

vehicles or energy storage systems, collaboratively 

train a shared AI model without exchanging raw data. 

This decentralized approach is crucial for battery 

systems, as it allows real-time model updates while 

ensuring that sensitive data remains on the edge 

devices. Such collaborative learning not only 

improves predictive models for battery life and 

charging patterns but also increases the robustness of 

these models by capturing diverse real-world usage 

patterns [146,148]. Integrating FL in battery systems 

holds promise for optimizing energy distribution 

across smart grids and enhancing the predictive 

maintenance of batteries. 

 

7.2 Collaborative Research and Open Data 

Initiatives 

To accelerate the development of AI-driven 

battery management systems, the need for 

collaborative research and open data-sharing 

initiatives cannot be understated. Many current 

machine learning (ML) and AI models suffer from 

limited access to high-quality, diverse datasets. To 

bridge this gap, collaborative platforms such as 

Battery Data Genome and various consortia are 

working to consolidate global data from different 

battery manufacturers and research labs. These 

initiatives aim to develop a standardized framework 

for sharing battery data while ensuring privacy and 

security, thus encouraging innovation and 

transparency in AI model development. Large 

datasets allow AI models to better generalize across 

different battery chemistries and usage scenarios, 

making predictions more reliable [145,149] 

In particular, open data initiatives are 

essential for training AI models that can predict 

battery aging, identify faults, and optimize charging 

cycles. As more organizations recognize the 

importance of transparency, collaborative projects are 

expanding across the electric vehicle and energy 

storage sectors. This trend is anticipated to lead to the 

development of highly generalized AI models 

capable of managing the next generation of energy 

storage systems effectively [142, 150]. 

 

7.3 Towards Sustainable and Intelligent Energy 

Solutions 

AI plays a critical role in advancing the 

development of sustainable and intelligent energy 

storage systems. Through material design 

optimization, AI techniques are already being 

employed to discover new materials for electrodes 

and electrolytes that offer higher energy densities and 

better safety profiles. Simultaneously, AI-powered 

optimization of battery recycling and second-life 

applications is emerging as a key avenue for reducing 

the environmental impact of LIBs. Federated 

learning, in combination with other distributed 

learning techniques, can optimize energy usage 

across large-scale grids and reduce energy losses, 

promoting sustainable energy solutions [23,151]. 

AI’s potential to integrate various 

components of renewable energy systems—such as 

solar and wind energy—into smart grid technologies 

is another critical area of development. AI-optimized 

energy management systems can ensure efficient 

power storage and distribution, leveraging predictive 

models to forecast energy demands and charge or 

discharge batteries accordingly. This integration 

fosters a more balanced and sustainable energy 

ecosystem, essential for reducing dependency on 

fossil fuels and minimizing the environmental 

footprint of energy consumption [151-153]. 

In principle, reinforcement learning and 

federated learning offer exciting opportunities for 

improving battery management, from charging 

protocols to lifecycle optimization. Moreover, the 
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collaborative and open data initiatives driving these 

advancements underscore the importance of 

collective efforts in accelerating innovation. Looking 

forward, AI will be instrumental in creating the next 

generation of sustainable energy systems, shaping the 

future of battery technology in renewable energy and 

beyond. 

 

VIII. CONCLUSION 
The integration of Artificial Intelligence 

(AI) into lithium-ion battery (LIB) technology has 

proven to be transformative, significantly enhancing 

the performance, safety, and longevity of these 

energy storage systems. Through the utilization of 

machine learning models such as neural networks, 

reinforcement learning, and explainable AI, 

researchers and engineers have been able to make 

substantial advancements in battery management 

systems (BMS). These systems can now more 

accurately predict State of Health (SoH) and State of 

Charge (SoC), optimize charge cycles, and detect 

potential failures before they occur, reducing the 

likelihood of catastrophic events like thermal 

runaway.AI techniques have also played a pivotal 

role in the discovery and design of new materials for 

LIBs, accelerating the pace of research and 

improving the efficiency of battery components, 

including anodes, cathodes, and electrolytes. This 

material optimization process helps to enhance 

battery capacity, safety, and overall performance. In 

parallel, AI-driven safety management techniques 

have introduced more reliable thermal management 

strategies and predictive fault detection mechanisms, 

which are essential for high-demand applications like 

electric vehicles (EVs). 

Despite the remarkable progress made, there 

remain challenges to be addressed, particularly in 

terms of data quality, model interpretability, and the 

seamless integration of AI with existing industrial 

systems. These obstacles must be overcome to fully 

realize AI's potential in revolutionizing the battery 

industry. 

Looking to the future, the development of 

emerging AI technologies such as reinforcement 

learning (RL) and federated learning (FL) promises 

to unlock even greater advancements. RL can 

dynamically optimize charging and discharging 

protocols, while FL allows for distributed, 

collaborative model training across multiple devices 

without compromising data privacy. As more 

collaborative research initiatives and open data-

sharing platforms emerge, AI-based solutions will 

become more refined and widely accessible.AI is also 

expected to play a vital role in the transition toward 

sustainable energy solutions, integrating renewable 

energy sources with intelligent battery systems. By 

optimizing energy storage and distribution in smart 

grids, AI will help create a more energy-efficient and 

environmentally friendly future, minimizing our 

reliance on fossil fuels.  

In essence, the role of AI in enhancing LIB 

performance and safety is profound, and its continued 

integration into battery technologies will likely shape 

the future of energy storage, electric mobility, and 

sustainable energy systems. With ongoing 

advancements in AI techniques and collaborative 

research, the potential for innovation in this field is 

boundless. 
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