

Continuous Monotonic Cube Decomposition of Coconut Tree Graph CT_m

V.G. Smilin Shali¹ and S. Asha²

¹Research Scholar, Reg. No. 12609

²Assistant Professor

Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District - 629 165, Tamil Nadu, India.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Date of Submission: 20-11-2020

ABSTRACT: Let G be a finite, connected, undirected simple graph with p vertices and q edges. If G_1, G_2, \ldots, G_n are connected edge – disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2)$ $\cup \ldots \cup E(G_n)$, then $\{G_1, G_2, \ldots, G_n\}$ is said to be a decomposition of G. In this paper , we introduce a new concept called Continuous Monotonic Cube Decomposition. A graph G is said to have a Continuous Monotonic Cube Decomposition if G can be decomposed into subgraphs $\{G_1, G_2, \ldots, G_n\}$ such that each G_i is connected and $|E(G_i)| = i^3$, for $1 \le i \le n$.

Clearly, $q = \left[\frac{n(n+1)}{2}\right]^2$. Also, we obtained

the characterization for a coconut tree graph CT_m to admit Continuous Monotonic Cube Decomposition.

Keywords : Decomposition of graph, Continuous Monotonic Decomposition , Continuous Monotonic Cube Decomposition.

I. INTRODUCTION

Let G = (V, E) be a simple, connected graph with p vertices and q edges. If G_1, G_2, \ldots , G_n are connected edge – disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup E(G_n)$, then $\{G_1, G_2, \ldots, G_n\}$ is said to be a decomposition of G. Different types of decomposition of G have been studied in the literature by imposing suitable conditions on the subgraphs G_i . In this paper, we introduce a new concept called Continuous Monotonic Cube Decomposition. Terms not defined here are used in the sense of Harary [2].

Definition 1.1. Let G = (V, E) be a simple graph of order p and size q. If G_1, G_2, \ldots, G_n are edge - disjoint subgraphs of G such that $E(G) = E(G_1) \cup$

 $E(G_2)\cup\ldots\,\cup E(G_n)$, then { $G_1,\ G_2,\ldots\,,\,G_n$ } is said to be a Decomposition of $\ G.$

Date of Acceptance: 05-12-2020

Definition [3] 1.2. A decomposition $\{G_1, G_2, \ldots, G_n\}$ of a connected graph G is said to have Continuous Monotonic Decomposition if each G_i is connected and $|E(G_i)| = i$, for $1 \le i \le n$.

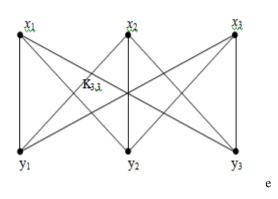
Definition [5] 1.3. A Coconut Tree graph CT(m,n) is the graph obtained from the path P_n by appending m new pendant edges at an end vertex of P_n . If m = n, then a coconut tree graph CT(m,n) is denoted as CT_m .

II. CONTINUOUS MONOTONIC CUBE DECOMPOSITION OF GRAPHS

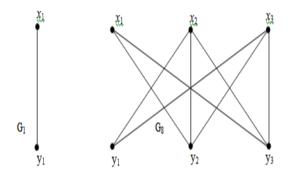
Definition 2.1. A connected graph G admit Continuous Monotonic Cube Decomposition {G₁, G₂,..., G_n} if each G_i is connected and $|E(G_i)| = i^3$, $\forall i = 1, 2, ..., n$. Clearly $q = \left[\frac{n(n+1)}{2}\right]^2$ is the sum of the cubes of first n

natural numbers. We denote the Continuous Monotonic Cube Decomposition as $\{G_1, G_8, G_{27}, ..., G_{-3}\}$.

Example 2.2. Let us consider the complete bipartite graph $K_{3,3}$. The graph $K_{3,3}$ is given in the following figure.



The complete bipartite graph $K_{3,3}$ admit Continuous Monotonic Cube Decomposition $\{G_1, G_8\}$. The Continuous Monotonic Cube Decomposition of $K_{3,3}$ is given in the following figure.



Theorem 2.3. A connected graph G admit Continuous Monotonic Cube Decomposition $\{G_1, G_8, G_{27}, ..., G_{n^3}\}$ if and only if $q = \left[\frac{n(n+1)}{2}\right]^2$, $\forall n \in \mathbb{N}$.

III. CONTINUOUS MONOTONIC CUBE DECOMPOSITION OF CT_M

Lemma 3.1. Let $k + 2 \equiv 0 \pmod{4}$. Then G can be decomposed into $\{G_{1^3}, G_{2^3}, ..., G_{k^3}\}$. Here

$$\left[\frac{k(k+1)}{2}\right]^2 = 2m - 1$$

Proof. We have $k + 2 \equiv 0 \pmod{4}$. Then k = 4r - 2, $r \ge 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. When r = 1, k = 2. Then 2m - 1 = 9 can be decomposed into $\{G_{1^3}, G_{2^3}\}$. Hence the result is true for r = 1.

Assume the result is true for r-1. Then k = 4r - 6.

Then $q' = 2m - 1 = \left[\frac{(4r - 6)(4r - 5)}{2}\right]^2$ can be decomposed into $\left\{G_{1^3}, G_{2^3}, \dots, G_{(4r-6)^3}\right\}$. Now, to prove the result is true for r. We have to prove that $q = 2m - 1 = \left[\frac{(4r - 2)(4r - 1)}{2}\right]^2$ can be decomposed into $\left\{G_{1^3}, G_{2^3}, \dots, G_{(4r-2)^3}\right\}$. Define $q = q' \cup (4r-5) \cup (4r-4) \cup (4r-3) \cup (4r-2)$. Then $q = q' + (4r - 5)^3 + (4r - 4)^3 + (4r - 3)^3 + (4r - 2)^3 = \left[\frac{(4r - 2)(4r - 1)}{2}\right]^2$ can be decomposed into $\left\{G_{1^3}, G_{2^3}, \dots, G_{(4r-2)^3}\right\}$. Hence by induction hypothesis, the result is true for all r.

Lemma 3.2. Let $k + 3 \equiv 0 \pmod{4}$. Then G can be decomposed into $\{G_{1^3}, G_{2^3}, ..., G_{k^3}\}$. Here

$$\left[\frac{k(k+1)}{2}\right]^2 = 2m-1.$$

Proof. We have $k + 3 \equiv 0 \pmod{4}$. Then k = 4r - 3, $r \ge 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. When r = 1, k = 1. Then 2m - 1 = 1 can be decomposed into $\{G_{1^3}\}$. Hence the result is true for r = 1.

Assume that the result is true for r - 1. Then k = 4r - 7. Then q'=2m-1 $=\left[\frac{(4r-7)(4r-6)}{2}\right]^2$ can be decomposed into $\{G_{1^3}, G_{2^3}, \dots, G_{(4r-7)^3}\}.$

Now, to prove the result is true for r. We have to prove that $q = 2m - 1 = \left[\frac{(4r-3)(4r-2)}{2}\right]^2$ can be decomposed into $\left\{G_{1^3}, G_{2^3}, \dots, G_{(4r-3)^3}\right\}$. Define $q = q' \cup (4r - 6) \cup (4r - 5) \cup (4r - 4) \cup (4r - 3)$. Then $q = q' + (4r - 6)^3 + (4r - 5)^3 + (4r - 4)^3 + (4r - 3)^3 = \left[\frac{(4r-3)(4r-2)}{2}\right]^2$ can be decomposed into $\left\{G_{1^3}, G_{2^3}, \dots, G_{(4r-3)^3}\right\}$. Hence by induction hypothesis, the result is true for all r.

Theorem 3.3. For any odd integer m, CT_m has Continuous Monotonic Cube decomposition [kdecompositions] denoted by $\{G_{1^3}, G_{2^3}, ..., G_{k^3}\}$ if and only if there exists an integer k satisfying the following properties :

1. k = 4r - 2 or 4r - 3, $r \ge 1$ and $r \in \mathbb{Z}$, where k denotes the total number of decompositions.

2.
$$\left[\frac{k(k+1)}{2}\right]^2 = 2m-1.$$

Proof. Let $G = CT_m$. By the definition of G, q = 2m- 1. Assume that G accept Continuous Monotonic Cube Decomposition. By the definition, q =

 $\left\lceil \frac{k(k+1)}{2} \right\rceil^2$ where k denotes the total number of

decompositions. Hence $\left[\frac{k(k+1)}{2}\right]^2 = 2m-1$. Then m = $\frac{\left[k(k+1)\right]^2 + 4}{8}$. Clearly m is an odd

integer. Since m is an odd integer, k = 4r - 2 or 4r

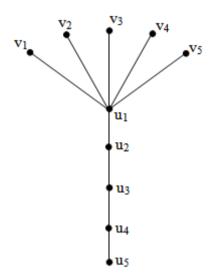
 $-3, r \geq 1$ and $r \in \mathbb{Z}$.

Conversely, assume that k = 4r - 2 or 4r - 2

3,
$$r \ge 1$$
 and $r \in \mathbb{Z}$. Also $\left[\frac{k(k+1)}{2}\right]^2 = 2m-1$.
By Lemma 3.1 and 3.2, $2m - 1 = \left[\frac{k(k+1)}{2}\right]^2$

can be decomposed into $\{G_{1^3}, G_{2^3}, ..., G_{k^3}\}$. Hence G admit Continuous Monotonic Cube Decomposition.

Illustration 3.4. As an illustration, let us decompose CT₅. The graph CT₅ is given in the following figure.



CT₅

Let $G = CT_5$. Here m = 5. Then k = 2. Thus $k + 2 \equiv$ 0(mod 4). Hence G admit Continuous Monotonic Cube Decomposition. The decomposition $\{G_{13}, G_{23}\}$ of G is given in the following figure.

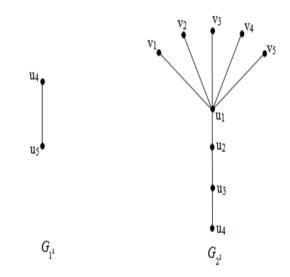


Table 3.5. List of first 10 CT_m's that accept Continuous Monotonic Cube decomposition and their decompositions are given in the following table

table.		
	m	Continuous Monotonic Cube Decompositions
	1	G_{1^3}
	5	G_{1^3}, G_{2^3}

113	$G_{1^3}, G_{2^3},, G_{5^3}$
221	$G_{1^3}, G_{2^3},, G_{6^3}$
1013	$G_{1^3}, G_{2^3},, G_{9^3}$
1513	$G_{1^3}, G_{2^3},, G_{10^3}$
4141	$G_{1^3}, G_{2^3},, G_{13^3}$
5513	$G_{1^3}, G_{2^3},, G_{14^3}$
1170 5	$G_{1^3}, G_{2^3},, G_{17^3}$
1462 1	$G_{1^3}, G_{2^3},, G_{18^3}$

REFERENCES

- E. Ebin Raja Merly and N. Gnanadhas, (2013), Arithmetic Odd Decomposition of Spider Tree, Asian Journal of Current Engineering and Maths, 99-101.
- [2]. Frank Harary, (1972), Graph Theory, Addison-Wesley Publishing Company.
- [3]. Gnanadhas. N, and Paulraj Joseph . J, (2000), Continuous Monotonic Decomposition of Graphs, International Journal of Management and Systems, Vol. 16, No. 3, 333-344.
- [4]. Juraj Bosak, (1990), Decomposition of Graphs, Kluwer Academic Press, Dordrecht.
- [5]. Shenbaga Devi . S. and Nagarajan . A., 2017, Near Skolem Difference Mean Labeling of Special Types of Trees, International Journal of Mathematics Trends and Technology, Vol. 52,No.7, December, 474-478.