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ABSTRACT 

In recent years, the integration of Artificial 

Intelligence (AI) in cybersecurity has significantly 

enhanced the capabilities of Intrusion Detection 

Systems (IDS) to detect and mitigate sophisticated 

cyber threats. However, the increasing complexity 

and opaque nature of AI models have led to 

challenges in understanding, interpreting, and 

trusting these systems. This paper addresses the 

critical issue of transparency and trust in IDS by 

exploring the application of Explainable AI (XAI) 

techniques. By leveraging XAI, we aim to 

demystify the decision-making processes of AI-

driven IDS, enabling security analysts to 

comprehend and validate the system's outputs 

effectively. The proposed framework integrates 

model-agnostic XAI methods, such as Local 

Interpretable Model-agnostic Explanations (LIME) 

and SHapley Additive exPlanations (SHAP), with 

state-of-the-art IDS algorithms to improve both 

interpretability and performance. Through 

comprehensive experiments on benchmark 

datasets, we demonstrate that our approach not 

only maintains high detection accuracy but also 

enhances the explainability of the model's 

decisions, thereby fostering greater trust among 

end-users. The findings of this study underscore the 

potential of XAI to bridge the gap between AI’s 

advanced capabilities and the human need for 

understanding, ultimately contributing to more 

secure and reliable cyber defense systems. 

Keywords: Explainable AI (XAI), Intrusion 

Detection Systems (IDS), Cybersecurity, 

Transparency, Trust, Model-agnostic Explanations, 

LIME, SHAP 

 

I. INTRODUCTION 
Background and Motivation 

In today's digital era, the proliferation of 

cyber threats has necessitated the deployment of 

advanced security measures to protect sensitive 

data and critical infrastructure. Artificial 

Intelligence (AI) has emerged as a transformative 

tool in cybersecurity, enabling the development of 

sophisticated Intrusion Detection Systems (IDS) 

capable of identifying and mitigating potential 

security breaches in real-time. AI-driven IDS 

leverage machine learning algorithms to detect 

anomalies and patterns indicative of malicious 

activities, thereby enhancing the speed and 

accuracy of threat detection (Hussain et al., 2021). 

However, the increasing reliance on complex, 

"black-box" AI models has raised significant 

concerns regarding their transparency and 

trustworthiness, particularly in critical applications 

such as cybersecurity (Zhang et al., 2020). 

 

Problem Statement 

Despite the remarkable advancements AI 

has brought to IDS, one of the major challenges 

that persist is the opaqueness of these systems. 

Traditional AI models used in IDS, such as deep 

neural networks, often operate as black-boxes, 

providing little to no insight into how decisions are 

made. This lack of transparency undermines the 

trust of security analysts and end-users, making it 

difficult to justify and validate the decisions made 
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by these systems, especially in high-stakes 

environments (Samek, Wiegand, and Müller, 

2017). Furthermore, the inability to understand the 

reasoning behind an IDS’s decision can lead to 

challenges in compliance with regulatory 

standards, which increasingly demand explain 

ability in AI systems (Rudin, 2019). 

 

Objective 

This paper aims to address these 

challenges by exploring the integration of 

Explainable AI (XAI) techniques into IDS to 

improve their transparency and trustworthiness. 

The objective is to demonstrate that XAI can 

provide meaningful insights into the decision-

making processes of AI-driven IDS, thereby 

enabling security analysts to interpret and trust the 

outcomes of these systems. The research focuses 

on the application of model-agnostic XAI methods, 

such as Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive 

exPlanations (SHAP), in enhancing the 

interpretability of IDS without compromising their 

performance. 

 

Structure of the Paper 

The remainder of this paper is organized 

as follows: Section 2 provides a comprehensive 

review of the literature on AI in cybersecurity, XAI 

techniques, and their application in IDS. Section 3 

outlines the methodology used in this research, 

including the proposed framework for integrating 

XAI into IDS and the datasets used for evaluation. 

Section 4 presents the results of the experiments 

conducted, showcasing the performance metrics of 

the proposed model, including accuracy, precision, 

recall, and interpretability scores. Tables and 

figures are used to illustrate these metrics, 

highlighting the benefits of XAI in improving IDS 

transparency. Section 5 discusses the implications 

of the findings, limitations of the study, and 

potential avenues for future research. Finally, 

Section 6 concludes the paper by summarizing the 

key contributions and the potential impact of XAI 

on enhancing trust in AI-driven cybersecurity 

systems. 

 

II. LITERATURE REVIEW 
AI in Cyber Security 

The rapid evolution of cyber threats has 

necessitated the adoption of advanced technologies, 

particularly Artificial Intelligence (AI), to enhance 

cybersecurity measures. AI has been instrumental 

in developing sophisticated Intrusion Detection 

Systems (IDS) capable of detecting and mitigating 

a wide range of cyberattacks. These systems use 

machine learning (ML) and deep learning (DL) 

algorithms to analyze vast amounts of data, identify 

patterns indicative of malicious activity, and 

respond in real-time (Kumar et al., 2020). 

Traditional signature-based IDS, which rely on 

predefined rules, have become less effective 

against zero-day attacks and advanced persistent 

threats (APTs), as they cannot adapt to new, unseen 

threats. In contrast, AI-driven IDS can learn from 

data, making them more adaptable and capable of 

detecting novel attack patterns (Chollet and Allaire, 

2018). 

One of the key advantages of AI in 

cybersecurity is its ability to automate threat 

detection, thereby reducing the reliance on human 

expertise and improving response times. For 

instance, deep learning models such as 

convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) have been 

successfully applied to network traffic analysis, 

achieving high detection accuracy and low false 

positive rates (Shamshirband et al., 2020). 

Additionally, unsupervised learning techniques, 

such as clustering and anomaly detection, have 

been used to identify outliers in network traffic, 

potentially flagging new types of attacks (Lopez-

Martin et al., 2019). However, while AI has 

significantly advanced the capabilities of IDS, it 

has also introduced new challenges, particularly 

concerning the transparency and interpretability of 

these systems. 

 

Explainable AI (XAI) 

Explainable AI (XAI) is an emerging field 

that seeks to address the opaqueness of AI models 

by making their decision-making processes more 

transparent and understandable to humans. As AI 

systems become more complex and are 

increasingly deployed in critical domains, such as 

healthcare, finance, and cybersecurity, the need for 

explainability has grown. XAI aims to provide 

insights into how AI models arrive at their 

predictions, thereby enhancing trust and enabling 

users to validate the system's outputs (Arrieta et al., 

2020). 

There are various approaches to achieving 

explainability in AI models, ranging from intrinsic 

methods, which involve designing inherently 

interpretable models, to post-hoc techniques, which 

seek to explain the decisions of black-box models 

after they have been made (Guidotti et al., 2018). 

Among the most widely used post-hoc techniques 

are Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive 
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exPlanations (SHAP). LIME explains the 

predictions of any classifier by approximating it 

locally with an interpretable model, such as a linear 

model or decision tree (Ribeiro, Singh, and 

Guestrin, 2016). SHAP, on the other hand, is based 

on cooperative game theory and provides a unified 

measure of feature importance by attributing each 

feature's contribution to a prediction (Lundberg and 

Lee, 2017). 

These techniques are model-agnostic, 

meaning they can be applied to any AI model, 

regardless of its complexity. This makes them 

particularly useful in cybersecurity, where the 

interpretability of models used in IDS is critical for 

ensuring that security analysts can trust and act on 

the system's recommendations. 

 

Current Challenges in IDS 

Despite the advances brought about by AI, 

several challenges remain in the development and 

deployment of IDS, particularly regarding the 

transparency and trustworthiness of these systems. 

One of the primary concerns is the black-box 

nature of many AI models used in IDS. Models 

such as deep neural networks are often highly 

accurate, but their internal workings are not easily 

understood by humans, making it difficult to 

explain why a particular decision was made 

(Samek et al., 2017). This lack of transparency 

poses significant risks in cybersecurity, where the 

stakes are high, and decisions need to be justifiable. 

Another challenge is the potential for AI 

models to exhibit biases, which can lead to unfair 

or incorrect decisions. For example, an IDS trained 

on imbalanced data may be more likely to flag 

certain types of network traffic as malicious while 

ignoring others, leading to false positives or 

negatives (Zhang et al., 2020). Additionally, the 

dynamic nature of cyber threats means that IDS 

must continuously adapt to new attack vectors, 

requiring models that are not only accurate but also 

interpretable and explainable. 

Furthermore, the use of AI in IDS raises 

concerns about accountability and compliance with 

regulatory standards. As regulations such as the 

General Data Protection Regulation (GDPR) 

increasingly demand transparency and 

explainability in automated decision-making 

systems, there is a growing need to ensure that AI-

driven IDS can meet these requirements (Rudin, 

2019). 

 

XAI in Cyber Security 

The integration of XAI into IDS has been 

the subject of several recent studies, highlighting 

the potential of XAI to address the transparency 

and trust issues associated with AI-driven 

cybersecurity systems. For instance, Akerkar and 

Badr (2020) proposed a hybrid approach 

combining XAI techniques with traditional IDS to 

improve both the interpretability and effectiveness 

of the system. Their research demonstrated that 

using SHAP to explain the output of a deep 

learning-based IDS allowed security analysts to 

better understand and trust the model's decisions, 

leading to improved threat detection performance. 

Another study by Kumar et al. (2021) 

explored the use of LIME to explain the decisions 

of a random forest-based IDS. Their findings 

indicated that LIME not only provided valuable 

insights into the model's behavior but also helped 

identify potential biases in the training data, which 

could be addressed to enhance the system's overall 

accuracy and fairness. Additionally, the study 

highlighted that integrating XAI into IDS could 

reduce the cognitive load on security analysts by 

providing clear, interpretable explanations, thereby 

improving decision-making efficiency. 

Despite these advancements, there are still 

gaps in the research that need to be addressed. 

Most studies have focused on applying XAI to 

relatively simple AI models, and there is a need for 

further exploration of how XAI can be applied to 

more complex, deep learning-based IDS. 

Additionally, while XAI techniques such as LIME 

and SHAP have shown promise in improving 

transparency, their computational overhead and 

scalability in real-time applications remain areas of 

concern (Bhatt et al., 2020). 

 

XAI Techniques in Cybersecurity: A 

Comparative Analysis 

The implementation of XAI techniques in 

cybersecurity, particularly in IDS, has been gaining 

momentum, with various studies exploring 

different methods to enhance explainability without 

compromising performance. This section provides 

a comparative analysis of the key XAI 

techniques—LIME, SHAP, and other model-

agnostic methods—in the context of cybersecurity, 

focusing on their effectiveness, efficiency, and 

applicability in real-world scenarios. 

 

Local Interpretable Model-agnostic 

Explanations (LIME) has been widely adopted 

due to its versatility and ease of use. LIME works 

by perturbing the input data and observing changes 

in the output, allowing it to build a local, 

interpretable model around each prediction. In 

cybersecurity, LIME has been successfully applied 
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to explain the decisions of various classifiers, 

including random forests and support vector 

machines (SVMs) used in IDS (Kumar et al., 

2021). However, while LIME provides valuable 

insights, it has limitations, particularly in its 

scalability to large datasets and deep learning 

models. Additionally, LIME's reliance on local 

approximations means that its explanations may 

not always be consistent or stable across different 

runs, leading to potential trust issues among users 

(Ribeiro et al., 2016). 

 

SHapley Additive exPlanations (SHAP), based 

on cooperative game theory, has emerged as a 

powerful tool for providing consistent and 

interpretable explanations for complex models. 

SHAP assigns a unique value to each feature, 

representing its contribution to the prediction, and 

offers a unified measure of feature importance. In 

cybersecurity, SHAP has been particularly effective 

in explaining the output of deep learning models, 

such as neural networks, used in IDS (Lundberg 

and Lee, 2017). Studies have shown that SHAP not 

only improves transparency but also helps in 

identifying biases in the training data, making it a 

valuable tool for enhancing the fairness and 

reliability of IDS (Bhatt et al., 2020). However, 

SHAP's computational complexity can be a 

drawback, especially when applied to large-scale 

datasets or real-time applications. 

 

Model-agnostic Techniques such as partial 

dependence plots (PDPs), accumulated local effects 

(ALE), and feature importance scores have also 

been explored in cybersecurity. These techniques 

offer global explanations, providing insights into 

the overall behavior of the model rather than 

focusing on individual predictions. For instance, 

PDPs can illustrate the relationship between a 

particular feature and the predicted outcome, 

helping analysts understand how changes in input 

features influence the model's decisions (Molnar, 

2019). ALE, on the other hand, addresses some of 

the biases inherent in PDPs by accounting for 

feature interactions and providing more accurate 

global explanations (Apley and Zhu, 2020). While 

these methods are useful for understanding model 

behavior, they may not always be sufficient for 

explaining complex, high-dimensional data typical 

in cybersecurity applications. 

 

Comparative Performance Metrics: The 

following table (Table 1) summarizes the key 

performance metrics of the discussed XAI 

techniques when applied to IDS, including their 

scalability, computational complexity, 

interpretability, and suitability for different types of 

AI models. 

 

XAI 

Technique 

Scalability Computatio

nal 

Complexity 

Interpretabili

ty 

Suitable AI 

Models 

Real-time 

Applicability 

LIME Moderate Moderate High (local) Random 

Forests, 

SVMs 

Limited 

SHAP Low High Very High 

(global) 

Deep 

Learning 

Models 

Limited 

PDP High Low Moderate 

(global) 

Various High 

ALE High Moderate High (global) Various High 

 

Key Findings and Research Gaps: While XAI 

techniques like LIME and SHAP have shown 

promise in improving transparency and trust in 

IDS, there are still challenges to be addressed. The 

computational overhead associated with these 

techniques limits their applicability in real-time 

cybersecurity scenarios, where quick decision-

making is crucial. Moreover, most existing studies 

have focused on the technical aspects of XAI, with 

less attention given to the human factors involved 

in interpreting and trusting these explanations 

(Kaur et al., 2020). Future research should explore 

ways to optimize XAI techniques for real-time 

applications and investigate how different 

stakeholders, including security analysts, managers, 

and end-users, perceive and utilize these 

explanations in their decision-making processes. 

 

Conclusion of Literature Review 

The integration of AI in cybersecurity, 

particularly in the development of IDS, has greatly 

enhanced the ability to detect and respond to 
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complex cyber threats. However, the black-box 

nature of many AI models presents significant 

challenges in terms of transparency and trust, 

which are critical for ensuring the reliability and 

accountability of these systems. Explainable AI 

(XAI) techniques, such as LIME, SHAP, and other 

model-agnostic methods, offer promising solutions 

to these challenges by providing interpretable 

explanations for AI-driven decisions. While current 

research has demonstrated the effectiveness of 

these techniques in improving IDS transparency, 

there remain gaps that need to be addressed, 

particularly regarding the scalability and real-time 

applicability of XAI in cybersecurity. Addressing 

these gaps will be crucial for advancing the field 

and ensuring that AI-driven cybersecurity systems 

can be both powerful and trustworthy. 

 

III. METHODOLOGY 
Proposed Model 

This study proposes an innovative model 

that integrates Explainable AI (XAI) techniques 

with Intrusion Detection Systems (IDS) to enhance 

transparency and trust. The proposed model 

leverages both classical machine learning 

algorithms and modern deep learning techniques, 

augmented by XAI methods such as SHAP and 

LIME, to provide interpretable outputs.  

 

Data Collection 

The proposed model is trained and tested on two 

benchmark datasets widely used in cybersecurity 

research: KDD Cup 99 and NSL-KDD. 

 KDD Cup 99: This dataset is a well-known 

benchmark for IDS and contains 

approximately 4.9 million instances with 41 

features. It includes various types of attacks, 

such as Denial of Service (DoS), Probe, and 

User to Root (U2R) attacks (Tavallaee et al., 

2009). Despite criticisms for its redundancy 

and outdated attack patterns, KDD Cup 99 

remains relevant for evaluating IDS due to its 

extensive use in the literature. 

 NSL-KDD: A refined version of KDD Cup 99, 

NSL-KDD addresses some of the criticisms by 

removing duplicate records and ensuring a 

more balanced distribution of attack types. It 

contains 125,973 training instances and 22,544 

testing instances (Moustafa and Slay, 2015). 

NSL-KDD is used alongside KDD Cup 99 to 

ensure the generalizability and robustness of 

the proposed model. 

 

The data preprocessing step involves 

standardization and feature selection, with 

redundant features removed to enhance the model's 

efficiency. Table 2 provides a summary of the 

datasets used in this study. 

 

Dataset Training 

Instances 

Testing 

Instances 

Features Attack Types 

KDD Cup 99 4,898,431 311,029 41 5 

NSL-KDD 125,973 22,544 41 5 

Table 2: Summary of datasets used for model training and testing 

 

Algorithms and Techniques 

The proposed model utilizes a combination of 

Random Forest (RF) and Convolutional Neural 

Networks (CNNs) as the core algorithms for 

intrusion detection. 

 Random Forest (RF): RF is an ensemble 

learning method that combines multiple 

decision trees to improve predictive 

performance. It is chosen for its interpretability 

and robustness against overfitting (Breiman, 

2001). RF is particularly effective in handling 

high-dimensional data and is widely used in 

IDS (Li et al., 2019). 

 Convolutional Neural Networks (CNNs): 

CNNs are deep learning models known for 

their ability to automatically learn features 

from raw data. CNNs are employed to capture 

complex patterns and relationships in the 

network traffic data that may be missed by 

traditional methods. The architecture includes 

several convolutional layers followed by 

pooling and fully connected layers, optimized 

using the Adam optimizer (Kingma and Ba, 

2015). 

 

The XAI techniques applied to these models are: 

 SHapley Additive exPlanations (SHAP): 

SHAP values are computed for the RF and 

CNN models to provide global and local 

explanations for each prediction. SHAP’s 

consistency and ability to assign unique 

importance values to features make it ideal for 

understanding the contribution of each feature 

to the prediction (Lundberg and Lee, 2017). 

 Local Interpretable Model-agnostic 

Explanations (LIME): LIME is applied to 
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generate local explanations by perturbing the 

input data and observing changes in the 

model’s output. LIME is particularly useful for 

explaining individual predictions, making it a 

complementary technique to SHAP in this 

study (Ribeiro et al., 2016). 

 

Evaluation Metrics 

The performance of the proposed model is 

evaluated using a combination of traditional 

metrics and novel interpretability scores to assess 

both detection accuracy and the quality of the 

explanations provided by the XAI techniques. 

1. Accuracy, Precision, Recall, and F1-

Score: These standard metrics are used to evaluate 

the effectiveness of the IDS component. Accuracy 

measures the overall correctness of the model, 

while precision, recall, and F1-score provide 

insights into the model’s ability to correctly 

identify intrusions versus normal traffic (Manning 

et al., 2008). 

2. Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC): The 

AUC-ROC score is used to evaluate the 

model’s ability to discriminate between attack 

and non-attack instances. A higher AUC-ROC 

indicates better model performance (Fawcett, 

2006). 

3. Interpretability Scores: The explanations 

generated by SHAP and LIME are evaluated 

for interpretability using qualitative and 

quantitative measures. Qualitative measures 

involve expert assessments of the explanations, 

while quantitative measures include stability, 

fidelity, and consistency scores, as suggested 

by Arya et al. (2019). 

4. Trustworthiness Metric: A novel metric is 

introduced to quantify the trust level of users 

in the model’s predictions. This metric is 

derived from user studies where security 

analysts rate their trust in the explanations 

provided by the XAI module (Doshi-Velez and 

Kim, 2017). 

 

Table 3 provides a summary of the evaluation metrics used in this study. 

Metric Description Purpose 

Accuracy Overall correctness of the IDS Evaluate detection performance 

Precision Proportion of true positives among 

detected positives 

Measure model precision 

Recall Proportion of true positives among 

actual positives 

Measure model recall 

F1-Score Harmonic mean of precision and 

recall 

Assess balance between precision 

and recall 

AUC-ROC Discrimination capability of the IDS Evaluate model's discriminatory 

power 

Interpretability Score Expert and quantitative assessment 

of explanation quality 

Evaluate explanation quality 

Trustworthiness Metric User-rated trust in model predictions Assess user trust in model 

explanations 

Table 3: Summary of evaluation metrics 

 

Experimental Setup 

The experiments are conducted on a high-

performance computing environment with the 

following specifications: 

 Processor: Intel Xeon E5-2670 v3 @ 2.30GHz 

 RAM: 128 GB 

 GPU: NVIDIA Tesla K80 

 Software: Python 3.8, TensorFlow, Scikit-

learn, SHAP, and LIME libraries. 

 

The models are trained on the training sets 

of the KDD Cup 99 and NSL-KDD datasets, with 

hyperparameters tuned using grid search. The 

models are validated using 5-fold cross-validation 

to avoid overfitting and to ensure generalizability. 

 

Hyperparameter Tuning 

Hyperparameter tuning is crucial for 

optimizing model performance. For the Random 

Forest model, the following hyperparameters are 

tuned: 

 Number of Trees: The number of decision 

trees in the forest is varied from 50 to 500 in 

increments of 50. 

 Max Depth: The maximum depth of the trees 

is varied from 10 to 100. 
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 Min Samples Split: The minimum number of 

samples required to split an internal node is 

varied from 2 to 10. 

 Max Features: The number of features to 

consider when looking for the best split is 

varied from 'auto', 'sqrt', and 'log2'. 

 

For the Convolutional Neural Network (CNN), 

the following hyperparameters are optimized: 

 Learning Rate: Varied from 0.001 to 0.1. 

 Batch Size: Varied from 32 to 256. 

 Number of Convolutional Layers: The 

number of convolutional layers is varied from 

2 to 5. 

 Number of Filters: The number of filters in 

each convolutional layer is varied from 32 to 

128. 

 Dropout Rate: Varied from 0.1 to 0.5 to 

prevent overfitting. 

 

The best-performing hyperparameters are selected 

based on the highest F1-Score obtained during 

cross-validation. 

 

Explainability Analysis 

After training the models, SHAP and LIME are 

applied to the trained models to generate 

explanations for their predictions. The analysis 

focuses on: 

1. Global Explanations: SHAP values are 

computed across the entire dataset to 

understand the overall impact of each feature 

on the model’s predictions. This provides 

insights into which features are most 

influential in detecting intrusions. 

2. Local Explanations: LIME is used to generate 

explanations for individual predictions, 

especially for instances classified as attacks. 

This allows security analysts to understand 

why a particular instance was flagged as 

suspicious. 

 

In addition to SHAP and LIME, feature 

importance metrics such as Gini importance for the 

Random Forest model and activation maps for the 

CNN are analyzed to complement the 

interpretability assessment. 

 

User Study for Trust Evaluation 

To evaluate the trustworthiness of the 

XAI-enhanced IDS, a user study is conducted 

involving 30 cybersecurity professionals. The 

participants are provided with a set of predictions 

along with the corresponding explanations 

generated by the XAI module. They are asked to 

rate their trust in the system’s decisions on a Likert 

scale from 1 (low trust) to 5 (high trust). 

The results of the user study are analyzed 

using statistical methods such as mean trust scores, 

standard deviation, and correlation analysis to 

assess the relationship between explanation quality 

and trust. 

 

Table 4 presents the average trust scores for different types of explanations generated by SHAP and LIME. 

Explanation Type Mean Trust Score Standard Deviation 

SHAP (Global) 4.2 0.5 

SHAP (Local) 4.1 0.6 

LIME (Local) 3.8 0.7 

 

Table 4: Average trust scores for different types of 

explanations. 

The findings from the user study are used 

to refine the XAI module and improve the quality 

of the explanations, ultimately enhancing the 

overall trust in the IDS 

 

IV. EXPERIMENTS AND RESULTS 
4.1 Experimental Setup 

The experiments were conducted in a controlled 

environment equipped with high-performance 

computing resources to ensure reliable and 

reproducible results. The specifications of the 

experimental setup are as follows: 

 Hardware: 

o Processor: Intel Xeon E5-2670 v3 @ 2.30GHz 

o RAM: 128 GB 

o GPU: NVIDIA Tesla K80 

 Software: 

o Operating System: Ubuntu 20.04 LTS 

o Python Version: 3.8 

o Libraries and Frameworks: TensorFlow, 

Scikit-learn, SHAP, LIME, Matplotlib, Pandas 

 Configuration: 

o Dataset: KDD Cup 99 and NSL-KDD 

o Cross-Validation: 5-fold cross-validation to 

mitigate overfitting 

o Hyperparameter Tuning: Grid search for 

optimal hyperparameters in Random Forest 

(RF) and Convolutional Neural Network 

(CNN) models 
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The models were trained on the training 

sets of the datasets, with hyperparameters tuned as 

described in the Methodology section. The 

evaluation was carried out using both traditional 

performance metrics (e.g., accuracy, precision, 

recall) and interpretability metrics derived from 

SHAP and LIME. 

 

4.2 Results 

The results of the experiments are 

presented in this section, highlighting the 

performance of the proposed model in terms of 

accuracy, precision, recall, F1-score, and 

interpretability. 

 

Table 5 presents the performance metrics of the proposed model on both the KDD Cup 99 and NSL-KDD 

datasets. 

Dataset Model Accuracy Precision Recall F1-Score Interpretability 

Score 

KDD Cup 99 RF 98.4% 97.2% 96.8% 97.0% 8.5 

 CNN 99.2% 98.5% 98.0% 98.2% 7.8 

NSL-KDD RF 97.6% 96.3% 95.9% 96.1% 8.4 

 CNN 98.8% 97.6% 97.2% 97.4% 7.9 

 

Table 5: Performance metrics of the proposed 

model on KDD Cup 99 and NSL-KDD datasets. 
As shown in Table 5, the CNN model 

outperforms the RF model in terms of accuracy and 

F1-score across both datasets, but the RF model 

exhibits a higher interpretability score due to its 

simpler structure and the more straightforward 

application of SHAP. 

 

4.3 Comparative Analysis 

The proposed model's performance was 

compared with several state-of-the-art models, 

including Support Vector Machines (SVM), 

Gradient Boosting Decision Trees (GBDT), and 

Deep Belief Networks (DBN). The comparison is 

based on the same datasets, and the results are 

summarized in Table 6. 

 

Model Dataset Accuracy Precision Recall F1-Score Interpretability 

Score 

SVM KDD Cup 99 96.5% 95.4% 94.7% 95.0% 6.2 

GBDT KDD Cup 99 97.8% 96.8% 96.4% 96.6% 7.1 

DBN KDD Cup 99 98.1% 97.0% 96.7% 96.8% 7.0 

Proposed RF KDD Cup 99 98.4% 97.2% 96.8% 97.0% 8.5 

Proposed CNN KDD Cup 99 99.2% 98.5% 98.0% 98.2% 7.8 

Table 6: Comparative analysis of proposed models with other state-of-the-art models. 

 

4.4 Case Studies 

To validate the effectiveness of the proposed XAI-

enhanced IDS in real-world scenarios, two case 

studies were conducted using real network traffic 

from a financial institution and a healthcare 

provider. 

 Case Study 1: Financial Institution 
In this scenario, the proposed model was 

deployed to monitor network traffic in a large 

financial institution. The XAI module provided 

clear explanations for each flagged intrusion, 

helping security analysts quickly identify and 

mitigate threats. The average trust score from the 

analysts was 4.3, reflecting high confidence in the 

system’s decisions. 

 

Figure 6 shows the SHAP values for a specific 

instance where a SQL injection attack was 

detected. 

 Case Study 2: Healthcare Provider 
The second deployment was at a 

healthcare provider's network, where the system 

monitored patient data transmissions for potential 

breaches. The XAI-enhanced IDS detected an 

anomalous access pattern that was later confirmed 

to be an insider threat. The LIME explanations 

were instrumental in tracing the origin of the 

breach, and the average trust score was 4.5. 

The case studies demonstrate that the 

proposed model not only improves detection 

accuracy but also enhances transparency and trust, 

making it a valuable tool for real-world 

cybersecurity applications. 
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V. DISCUSSION 
5.1 Interpretation of Results 

The results from our experiments 

demonstrate that integrating Explainable AI (XAI) 

techniques into Intrusion Detection Systems (IDS) 

significantly enhances both performance and user 

trust. As shown in Table 5, the Convolutional 

Neural Network (CNN) model outperforms the 

Random Forest (RF) model across key 

performance metrics, including accuracy, precision, 

and recall. Specifically, the CNN achieved an 

accuracy of 99.2% on the KDD Cup 99 dataset, 

compared to 98.4% for the RF model. This 

suggests that the CNN is more effective at 

detecting intrusions with a lower rate of false 

positives and false negatives. 

The interpretability scores, however, 

indicate a trade-off between accuracy and 

transparency. The CNN, while more accurate, has a 

lower interpretability score (7.8) compared to the 

RF model (8.5). This is in line with findings from 

Ribeiro et al. (2016), who noted that complex 

models like CNNs often sacrifice interpretability 

for performance (Ribeiro et al., 2016). This trade-

off underscores the importance of balancing 

accuracy with the ability to provide understandable 

explanations for model decisions. 

 

Table 5: Performance Metrics of Proposed Model 

Dataset Model Accuracy Precision Recall F1-Score Interpretability 

Score 

KDD Cup 99 RF 98.4% 97.2% 96.8% 97.0% 8.5 

 CNN 99.2% 98.5% 98.0% 98.2% 7.8 

NSL-KDD RF 97.6% 96.3% 95.9% 96.1% 8.4 

 CNN 98.8% 97.6% 97.2% 97.4% 7.9 

 

Figure 4: Confusion Matrix of CNN Model on 

NSL-KDD Dataset 
The confusion matrix (Figure 4) for the 

CNN model on the NSL-KDD dataset highlights its 

high performance in distinguishing between attack 

and normal traffic. The ability to effectively 

identify intrusions while minimizing false alarms is 

critical for the operational effectiveness of IDS. 

 

5.2 Implications for Cyber Security 

The integration of XAI into IDS has 

profound implications for cybersecurity. By 

providing interpretable explanations for detection 

results, XAI facilitates better decision-making and 

trust among security analysts. As highlighted by 

Singh et al. (2021), explainability in AI models can 

lead to faster identification of threats and more 

efficient response strategies (Singh et al., 2021). In 

practical terms, this means that security teams can 

more confidently rely on IDS outputs and make 

informed decisions about mitigating potential 

threats. 

The case studies conducted further validate these 

benefits. In the financial institution case study, the 

XAI-enhanced IDS provided clear explanations for 

detected intrusions, leading to a high trust score 

from security analysts. Similarly, the healthcare 

provider case study demonstrated that XAI can 

help in tracing and addressing insider threats more 

effectively. 

 

Figure 6: SHAP Values for SQL Injection 

Detection 

Figure 7: LIME Explanation for Insider Threat 

Detection 
These findings align with the broader 

trend in cybersecurity towards incorporating AI 

models that are not only effective but also 

transparent. As cybersecurity threats become more 

sophisticated, the need for systems that can explain 

their decision-making processes becomes 

increasingly critical (Zhang et al., 2022). 

 

5.3 Limitations and Future Research 

Despite the promising results, several 

limitations must be acknowledged. Firstly, the 

trade-off between model accuracy and 

interpretability remains a significant challenge. 

While CNN models provide higher accuracy, their 

lower interpretability scores may limit their 

practical applicability in scenarios where 

explanations are crucial. Future research could 

explore hybrid models that aim to combine high 

accuracy with enhanced interpretability. 

Additionally, the study was conducted 

using well-established datasets (KDD Cup 99 and 

NSL-KDD), which may not fully represent the 

diverse range of modern cyber threats. Future 

research should consider evaluating the proposed 

XAI-enhanced IDS on more recent and varied 

datasets to assess its robustness in real-world 

scenarios. 
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Finally, while this study focused on XAI 

techniques like SHAP and LIME, there are other 

explainability methods that could be investigated. 

For instance, integrating model-specific 

interpretability techniques with XAI could offer 

further insights into model behavior (Doshi-Velez 

& Kim, 2017). 

In summary, while the integration of XAI 

into IDS represents a significant advancement in 

improving transparency and trust, ongoing research 

and development are needed to address existing 

limitations and enhance the overall effectiveness of 

these systems. 

 

VI. CONCLUSION 
6.1 Summary of Findings 

This study explored the integration of 

Explainable AI (XAI) techniques into Intrusion 

Detection Systems (IDS) to enhance transparency 

and trust in cybersecurity. Our experiments 

demonstrated that the Convolutional Neural 

Network (CNN) model, while achieving superior 

accuracy (99.2% on the KDD Cup 99 dataset) 

compared to traditional Random Forest (RF) 

models, presents a trade-off between performance 

and interpretability. The CNN model achieved 

lower interpretability scores (7.8) than the RF 

model (8.5), indicating that while it provides more 

accurate intrusion detection, it is less transparent. 

The application of SHAP and LIME 

methods offered valuable insights into the decision-

making processes of the IDS. Our case studies in 

real-world settings, such as financial institutions 

and healthcare providers, validated the practical 

benefits of XAI, showing that interpretable 

explanations enhance trust and efficiency in threat 

detection and response. The results emphasize the 

critical role of XAI in improving the usability of 

IDS by providing clear, understandable reasons for 

detected anomalies and threats. 

 

Table 5: Performance Metrics of Proposed Model 

Dataset Model Accuracy Precision Recall F1-Score Interpretability Score 

KDD Cup 99 RF 98.4% 97.2% 96.8% 97.0% 8.5 

 CNN 99.2% 98.5% 98.0% 98.2% 7.8 

NSL-KDD RF 97.6% 96.3% 95.9% 96.1% 8.4 

 CNN 98.8% 97.6% 97.2% 97.4% 7.9 

Figure 4: Confusion Matrix of CNN Model on NSL-KDD Dataset 

 

6.2 Contributions 

This paper makes several key contributions to the 

field of cybersecurity and XAI: 

1. Integration of XAI in IDS: By incorporating 

XAI techniques like SHAP and LIME into 

IDS, this research enhances the interpretability 

of complex models, bridging the gap between 

high-performance machine learning models 

and their usability in practical cybersecurity 

applications (Ribeiro et al., 2016). 

2. Real-World Validation: The application of 

the proposed XAI-enhanced IDS in real-world 

case studies provides empirical evidence of its 

effectiveness. These case studies demonstrate 

that XAI can significantly improve analysts' 

trust and confidence in the system's outputs, 

thus supporting better decision-making and 

threat response (Singh et al., 2021). 

3. Performance Metrics and Comparative 

Analysis: The comprehensive performance 

metrics and comparative analysis presented in 

the paper offer valuable insights into the trade-

offs between accuracy and interpretability. 

This aids practitioners in selecting the 

appropriate models based on their specific 

needs and constraints (Zhang et al., 2022). 

 

Table 6: Comparative Analysis of Proposed Models 

Model Dataset Accuracy Precision Recall F1-Score Interpretability Score 

SVM KDD Cup 99 96.5% 95.4% 94.7% 95.0% 6.2 

GBDT KDD Cup 99 97.8% 96.8% 96.4% 96.6% 7.1 

DBN KDD Cup 99 98.1% 97.0% 96.7% 96.8% 7.0 

Proposed RF KDD Cup 99 98.4% 97.2% 96.8% 97.0% 8.5 

Proposed CNN KDD Cup 99 99.2% 98.5% 98.0% 98.2% 7.8 

 

6.3 Future Work 

Several avenues for future research emerge from 

this study: 

1. Hybrid Models: Investigate hybrid models 

that combine the high accuracy of deep 

learning techniques with enhanced 
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interpretability. This could involve integrating 

attention mechanisms or interpretable neural 

network architectures to improve transparency 

without significantly compromising 

performance (Doshi-Velez & Kim, 2017). 

2. Diverse Datasets: Evaluate the proposed XAI-

enhanced IDS on more contemporary and 

diverse datasets to assess its robustness against 

a broader range of cyber threats. This includes 

datasets representing emerging attack vectors 

and real-time network traffic (Li et al., 2019). 

3. Advanced XAI Techniques: Explore 

additional XAI techniques beyond SHAP and 

LIME to further enhance model 

interpretability. This includes developing new 

methods that can offer more granular 

explanations and better align with user 

requirements (Arya et al., 2019). 

4. User-Centric Evaluations: Conduct studies 

focused on user experience and interaction 

with XAI systems in IDS. Understanding how 

security analysts interpret and use the 

explanations provided can lead to 

improvements in the design and 

implementation of XAI techniques (Moustafa 

& Slay, 2015). 

 

In conclusion, integrating XAI into IDS 

presents a promising approach to improving 

transparency and trust in cybersecurity. This study 

lays a foundation for future research and practical 

implementations, with the potential to enhance the 

effectiveness and usability of IDS in real-world 

applications. 
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