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ABSTRACT

Gliomas are highly aggressive brain tumors, and
their precise segmentation in MRI scans is
important for treatment planning. In this study, we
employ a 2D U-Net model for automatic
segmentation of brain tumors using the BraT$S
dataset. Our technique segments sub-regions such
as the enhancing tumor, tumor core, and entire
tumor from four MRI sequences (T1, T1CE, T2,
FLAIR). The best-performing model achieved a
mean Intersection over Union (loU) of 81% and a
Dice score of 65.5%, showing the viability of 2D
U-Net for real-world neuroimaging applications.
Keywords, Gliomas, brain tumors, segmentation

l. INTRODUCTION

Brain tumors, particularly gliomas, are
among the most aggressive and life-threatening
cancers affecting the central nervous system [1].
Accurate and early delineation of tumor volumes
from magnetic resonance imaging (MRI) scans is
essential for effective treatment planning, including
radiotherapy, surgical intervention, and prognosis
assessment [2 — 5]. Manual annotation by
radiologists, however, is time-consuming, subject
to inter-observer variability, and not scalable for
large datasets [6].

Segmentation methods in medical imaging
are typically categorized into several classes, such
as threshold-based techniques such as Otsu’s
method [7], region-based approaches such as
region growing [8], edge-based methods such as
the Canny edge detector [9], clustering-based
techniques such as K-means, Fuzzy C-Means [10],
model-based methods such as active contours, level
sets [11, 12], and machine or deep learning-based
approaches such as U-Net, Mask R-CNN,
TransUNet [13-15]. Each category offers specific
advantages depending on the imaging modality,
anatomical target, and desired segmentation
accuracy.

Although traditional segmentation
techniques play a key role in outlining tumor
boundaries, their accuracy can be significantly
improved by incorporating advanced imaging
methods. One such method, Diffusion Tensor
Imaging (DTI), offers detailed insights into the
brain’s white matter structure, helping to refine
segmentation results and support more accurate
tumor modeling [16, 17].

Diffusion Tensor Imaging (DTI), a
specialized MRI technique, is extensively used in
neuroimaging to analyze the diffusion of water
molecules, particularly for mapping white matter
pathways. However, raw DTI images often suffer
from low contrast and indistinct tissue boundaries.
To enhance image quality, several methods have
been employed, including the extraction of scalar
indices such as fractional anisotropy (FA) and
mean diffusivity (MD), bias field correction, and
image fusion techniques. One notable method is the
Uni-Stable  enhancement  technique,  which
combines clustering maps from various algorithms
to produce stable, high-contrast images. Its three-
dimensional extension, Uni-Stable-3D, interpolates
between anisotropic slices to generate volumetric
probability maps that are well-suited for robust
tissue segmentation [18, 19].

Beyond segmentation, tumor analysis also
encompasses detection and prediction. Detection
methods range from traditional techniques such as
clustering and morphological operations to deep
learning-based models, including U-Net, V-Net,
and Mask R-CNN, which enable accurate tumor
localization and delineation [20 — 24]. Prediction
models aim to simulate tumor growth over time
and include reaction-diffusion models, spatio-
temporal simulations, and machine learning
frameworks such as long short-term memory
(LSTM) networks and survival analysis models.
For example, an anisotropic reaction-diffusion
model based on DTI data was proposed to simulate
glioma progression across white and gray matter,
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demonstrating its effectiveness for treatment
planning and prognosis [25].

This study addresses these limitations by
proposing a deep learning-based approach for
glioma segmentation using a 2D U-Net framework.
The model is trained and tested on BraTS 3D
multimodal MRI scans with expert-labeled tumor
masks. Each scan includes four modalities: FLAIR,
T1, T1CE, and T2.Though the data is 3D, our
approach processes it as 2D slices to reduce
computational demands while preserving relevant
features. This allows efficient yet accurate tumor
segmentation. Such models hold the potential to
enhance diagnostic accuracy, reduce variability in
interpretation, and accelerate clinical decision-
making. Our solution is reproducible and based on
widely available tools and datasets.

1. DATASET DESCRIPTION

In this study, we used the BraTS dataset,
available on Synapse repository [26]. This dataset
is widely recognized for benchmarking brain tumor
segmentation algorithms and is composed of
multimodal 3D MRI scans collected from patients
diagnosed with glioblastoma multiforme (GBM)
and low-grade gliomas (LGG). The dataset reflects
clinical heterogeneity and variability in tumor
appearance, making it suitable for training and
evaluating deep learning models.

Each case in the dataset includes four
different MRI scans, with each modality capturing
distinct anatomical and pathological features.
Together, they provide a comprehensive view of
the brain, which helps improve the accuracy of
tumor segmentation. An overview of these
modalities is provided in Table 1.

Table 1. Description of the four MRI modalities used in the dataset [26].

Modality Description

T1 T1-weighted structural MRI

T1CE T1-weighted with contrast enhancement (gadolinium)

T2 T2-weighted imaging, useful for fluid detection

FLAIR Fluid-Attenuated Inversion Recovery, suppresses CSF to highlight lesions
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( X 1 e J 3 b

Figure 1. Visual comparison of the four MRI modalities

Each imaging modality offers distinct
structural and pathological information, and
combining them allows for a more precise mapping
of tumor subregions. The dataset includes voxel-
level annotations with four different classification
labels.

Segmentation Labels:

The segmentation labels used in the
dataset correspond to distinct tumor structures and
are defined as follows

Image 12

Image tice

Table 2.Segmentation labels used in the dataset

[26].
Label Description
0 Background
1 Necrotic/Non-enhancing ~ Tumor
Core (NCR/NET)
2 Edema (ED)
43 Enhancing

Sub-region combinations:
Additionally, these labels can be combined to form
clinically meaningful tumor sub-regions
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Table 3. Label combinations representing tumor
sub-regions[26].

Label | Sub-region

1 Tumor Core (TC)
1,2,3 | Whole Tumor (WT)

3 Enhancing Tumor (ET)

All images were manually segmented by
four expert radiologists and validated by a board-
certified neuroradiologist. The preprocessing steps
included skull stripping, resampling to a 1 mm3
resolution, and co-registration [27].

1. DATAAND IMAGE
PREPROCESSING
In the field of medical imaging, especially
when dealing with MRI scans,it's common to
encounter differences in image intensity, spatial
resolution, and anatomical alignment. These
inconsistencies can pose significant challenges
when training deep learning models, as they
introduce noise and reduce data reliability. To
address these issues, we implemented a thorough
preprocessing pipeline aimed at normalizing the
data, enhancing key features, and preparing both
images and corresponding labels for segmentation.
The process is organized into two main
components: image preprocessing and label
preprocessing.

3.1 Image Preprocessing
Intensity Normalization

MRI images often vary in brightness and
contrast depending on the scanner type, imaging
protocol, or even the patient being scanned. To
reduce this variability and create a more consistent
dataset, we applied normalization to each image.
This technique standardizes the pixel intensity
values so they center around a mean of zero with a
standard deviation of one, helping the model better
detect relevant structural patterns rather than being
distracted by intensity differences [28].

Slice Selection

Rather than using the entire 3D volume,
we focused on axial slices that are most relevant for
tumor analysis. Specifically, slices from index 22 to
122 were extracted from each scan. This approach
avoids slices that contain little to no brain tissue
and ensures that the model concentrates on regions
where tumors are typically found [3].

Cropping and Resizing
To ensure uniform input dimensions
suitable for convolutional neural networks, each

selected slice was cropped and resized to 128 x 128
pixels. This step helps maintain consistency across
samples while also optimizing memory usage and
training speed [29].

Data Augmentation

To make our model more robust and
prevent overfitting, we incorporated several data
augmentation techniques during training. These
included random horizontal and vertical flips,
small-angle rotations, and changes in image
intensity. By simulating different imaging
conditions, these augmentations help the model
generalize better to new, unseen data [30].

Input Modalities

Each input sample was composed of two
MRI sequences: FLAIR and T1CE. FLAIR images
are particularly sensitive to areas of swelling or
edema, while T1CE images are effective at
showing regions of contrast uptake, often
associated with active tumor tissue. Using both
modalities together provided the model with richer
and more complementary information for accurate
tumor segmentation [25].

3.2 Label Preprocessing
Label Remapping

The original segmentation masks used
four labels: 0, 1, 2, and 4. Since label 4 was not
sequential (it represented the enhancing tumor), we
remapped it to 3 to produce a clean, continuous
label set. The final label scheme used in our study
was:

Table 4.Label Remapping.

Label Description

0 Background

1 Necrotic/Non-enhancing
Tumor Core (NCR/NET)

2 Edema (ED)

3 Enhancing Tumor (ET)

This adjustment simplified data handling
and ensured compatibility with standard categorical
loss functions used in deep learning frameworks
[32].

3.5 Model Architecture

To perform brain tumor segmentation, we
implemented a 2D U-Net architecture using
TensorFlow 2.12 and Keras. U-Net is particularly
effective for biomedical image segmentation, as it
captures both local and global context while
preserving spatial detail. Its encoder—decoder
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structure, enhanced with skip connections, allows
for precise reconstruction of tumor boundaries by
combining low-level spatial features with high-
level semantic information [33].

U-Net Structure
e Encoder Path:

The encoder comprises four blocks. Each
block includes two 2D convolutional layers (3%3
kernels, ReLU activation, 'same' padding),
followed by a 2x2 max-pooling operation for
downsampling. The number of filters doubles at
each level: 32, 64, 128, and 256. This progressive
structure  enables the network to extract
increasingly abstract features [33].

e Bottleneck:

At the network’s deepest layer, two
convolutional layers with 512 filters each are
followed by a dropout layer (rate = 0.2) to mitigate
overfitting.

input
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e Decoder Path:

The decoder mirrors the encoder with
upsampling layers (via transposed convolutions),
followed by convolutional  blocks.  Skip
connections from corresponding encoder levels are
concatenated to preserve spatial resolution. Filter
sizes decrease symmetrically: 256, 128, 64, and 32.

e Output Layer:

The final layer is a 1x1 convolution with
SoftMax activation, yielding a four-channel output
that corresponds to the segmentation classes:
background, necrotic core, edema, and enhancing
tumor.

Input and Output Specifications

e Input Shape: Each input consists of two
channels—FLAIR and T1CE—resulting in a
shape of (128, 128, 2).

e Output Shape: The model produces a
segmentation map of shape (128, 128, 4), with
class-wise probabilities for each tumor sub-

region.
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Figure 2.U-NET Structure [34].

Training Configuration

e Frameworks: TensorFlow 2.12 and Keras

e Loss Function: Categorical Crossentropy
(suitable for multi-class segmentation)

e Optimizer: Adam optimizer with a learning
rate of 0.001

e Regularization: Dropout (rate = 0.2) in the
bottleneck layer

Evaluation Metrics
To comprehensively assess  model
performance, we used several evaluation metrics,
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each providing insights into different aspects of
segmentation quality [35, 36]:

e Mean Intersection over Union (Mean loU):
Also known as the Jaccard Index, this

metric evaluates the overlap between predicted and

ground truth regions by computing the ratio of their

intersection to their union:

lou =A08L . (1)

It offers a strict measure of segmentation accuracy
and is computed per class before averaging.
¢ Dice Similarity Coefficient (DSC):

The Dice coefficient measures how
closely the predicted segmentation matches the
ground truth. It is especially useful for imbalanced
data such as tumor regions:

o Overall Dice: Aggregates segmentation
performance across all classes.

o Class-specific Dice: Computed separately for
necrotic core, edema, and enhancing tumor

regions.
2 |AnB|
DSC = ——— ... 2
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prediction target
e Precision:

Indicates the proportion of predicted positive
pixels that are actually positive.

e Sensitivity (Recall):

Also called the true positive rate, this metric
measures the model’s ability to detect all actual
tumor pixels:

I TP
Sensitivity =

TER e 3)

e  Specificity:
Measures the proportion of correctly identified
negative (background) pixels, helping assess

false positive rates:
TN

N Fp) o 4)

These metrics provide a balanced evaluation across
detection accuracy, overlap, and class-specific
segmentation—Kkey for ensuring clinical reliability
in automated tumor delineation systems.

Specificity =

3.3 Training Strategy

e Train/Val/Test split: 70% / 15% / 15%

e Epochs: 30

e  Optimizer: Adam (learning rate = 0.001)

e Callbacks:ReduceLROnPlateau,
EarlyStopping, CSVLogger

e Batch size: 1 (due to memory constraints)

e Custom DataGenerator for real-time
augmentation and loading

V. RESULTS
The U-Net model was trained for 30
epochs using TensorFlow and Keras. The best
validation performance was observed at epoch 19,
with the following results:

Table 5:Overall Validation Metrics and
Additional Performance Measures

Metric Value

Validation loss 0.0284
Validation accuracy 98.84%
Global Dice Coefficient 0.5139
Precision 99.08%
Specificity 99.69%

Table 6: Validation per-class Dice (epoch 19):

Tumor Sub-Region | Validation Dice Score
Necrotic Core

(NCR/NET) 0.4292

Edema (ED) 0.4644

Enhancing Tumor

ET) 0.5895

Training per-class Dice:
e NCR/NET: 0.4920
e ED:0.6751

e ET:0.6251

Table 7: Per-Class Dice Coefficients on the
Training Set

Tumor Sub-Region Training Dice
Score

Necrotic Core | 0.4920

(NCR/NET)

Edema (ED) 0.6751

Enhancing Tumor (ET) 0.6251

Minor overfitting was observed after epoch 19.
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V. DISCUSSION

The results of this work show that
employing a 2D U-Net for brain tumor
segmentation—by processing 3D MRI scans slice
by slice—is a practical and effective strategy.
Although this method doesn't leverage the
complete 3D spatial context, it still performed well
in identifying critical tumor regions like the Whole
Tumor (WT), Tumor Core (TC), and Enhancing
Tumor (ET). This aligns with earlier findings from
BraTS evaluations that showed 2D models can still
provide reliable results when properly trained [37].

Performance Observations

The model showed stronger accuracy on
larger and more consistent tumor components, such
as the whole tumor and tumor core. However,
segmenting the enhancing tumor region proved
more difficult. This subregion often presents with
irregular shapes and smaller volume, which tends
to challenge even the best segmentation models—a
limitation highlighted in various segmentation
studies [38].

Model Advantages

The U-Net’s encoder—decoder framework,
along with its skip connections, proved highly
beneficial for preserving fine spatial details while
also capturing contextual information at multiple
levels. This structure, originally designed for
biomedical tasks, supports precise boundary
delineation even with limited training data [33].

Furthermore, regularization techniques
like dropout, combined with data augmentation
strategies such as flipping and intensity shifts,
helped improve the model’s generalization by
reducing overfitting risk [39].

t MRI, Ground Truth, and Prediction

Ground Truth Predicted: EDEMA

N

VI. CONCLUSION

This thesis supports the effectiveness of a
2D U-Net model for segmenting brain tumors from
multimodal MRI data. Even without utilizing full
volumetric information, the model successfully
distinguished between key tumor components and
achieved encouraging segmentation performance.

The main benefit of this approach lies in
its simplicity and efficiency. It doesn’t require
extensive computational resources, making it
accessible for both clinical research settings and
practical deployment. The findings reinforce the
potential of 2D convolutional models in medical
image segmentation, especially when paired with
thoughtful preprocessing and training strategies
[40].
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