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ABSTRACT 

Gliomas are highly aggressive brain tumors, and 

their precise segmentation in MRI scans is 

important for treatment planning. In this study, we 

employ a 2D U-Net model for automatic 

segmentation of brain tumors using the BraTS 

dataset. Our technique segments sub-regions such 

as the enhancing tumor, tumor core, and entire 

tumor from four MRI sequences (T1, T1CE, T2, 

FLAIR). The best-performing model achieved a 

mean Intersection over Union (IoU) of 81% and a 

Dice score of 65.5%, showing the viability of 2D 

U-Net for real-world neuroimaging applications. 
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I. INTRODUCTION 
Brain tumors, particularly gliomas, are 

among the most aggressive and life-threatening 

cancers affecting the central nervous system [1]. 

Accurate and early delineation of tumor volumes 

from magnetic resonance imaging (MRI) scans is 

essential for effective treatment planning, including 

radiotherapy, surgical intervention, and prognosis 

assessment [2 – 5]. Manual annotation by 

radiologists, however, is time-consuming, subject 

to inter-observer variability, and not scalable for 

large datasets [6]. 

Segmentation methods in medical imaging 

are typically categorized into several classes, such 

as threshold-based techniques such as Otsu’s 

method [7], region-based approaches such as 

region growing [8], edge-based methods such as 

the Canny edge detector [9], clustering-based 

techniques such as K-means, Fuzzy C-Means [10], 

model-based methods such as active contours, level 

sets [11, 12], and machine or deep learning-based 

approaches such as U-Net, Mask R-CNN, 

TransUNet [13–15]. Each category offers specific 

advantages depending on the imaging modality, 

anatomical target, and desired segmentation 

accuracy. 

Although traditional segmentation 

techniques play a key role in outlining tumor 

boundaries, their accuracy can be significantly 

improved by incorporating advanced imaging 

methods. One such method, Diffusion Tensor 

Imaging (DTI), offers detailed insights into the 

brain’s white matter structure, helping to refine 

segmentation results and support more accurate 

tumor modeling [16, 17]. 

Diffusion Tensor Imaging (DTI), a 

specialized MRI technique, is extensively used in 

neuroimaging to analyze the diffusion of water 

molecules, particularly for mapping white matter 

pathways. However, raw DTI images often suffer 

from low contrast and indistinct tissue boundaries. 

To enhance image quality, several methods have 

been employed, including the extraction of scalar 

indices such as fractional anisotropy (FA) and 

mean diffusivity (MD), bias field correction, and 

image fusion techniques. One notable method is the 

Uni-Stable enhancement technique, which 

combines clustering maps from various algorithms 

to produce stable, high-contrast images. Its three-

dimensional extension, Uni-Stable-3D, interpolates 

between anisotropic slices to generate volumetric 

probability maps that are well-suited for robust 

tissue segmentation [18, 19]. 

Beyond segmentation, tumor analysis also 

encompasses detection and prediction. Detection 

methods range from traditional techniques such as 

clustering and morphological operations to deep 

learning-based models, including U-Net, V-Net, 

and Mask R-CNN, which enable accurate tumor 

localization and delineation [20 – 24]. Prediction 

models aim to simulate tumor growth over time 

and include reaction-diffusion models, spatio-

temporal simulations, and machine learning 

frameworks such as long short-term memory 

(LSTM) networks and survival analysis models. 

For example, an anisotropic reaction-diffusion 

model based on DTI data was proposed to simulate 

glioma progression across white and gray matter, 
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demonstrating its effectiveness for treatment 

planning and prognosis [25]. 

This study addresses these limitations by 

proposing a deep learning-based approach for 

glioma segmentation using a 2D U-Net framework. 

The model is trained and tested on BraTS 3D 

multimodal MRI scans with expert-labeled tumor 

masks. Each scan includes four modalities: FLAIR, 

T1, T1CE, and T2.Though the data is 3D, our 

approach processes it as 2D slices to reduce 

computational demands while preserving relevant 

features. This allows efficient yet accurate tumor 

segmentation. Such models hold the potential to 

enhance diagnostic accuracy, reduce variability in 

interpretation, and accelerate clinical decision-

making. Our solution is reproducible and based on 

widely available tools and datasets. 

 

II. DATASET DESCRIPTION 
In this study, we used the BraTS dataset, 

available on Synapse repository [26]. This dataset 

is widely recognized for benchmarking brain tumor 

segmentation algorithms and is composed of 

multimodal 3D MRI scans collected from patients 

diagnosed with glioblastoma multiforme (GBM) 

and low-grade gliomas (LGG). The dataset reflects 

clinical heterogeneity and variability in tumor 

appearance, making it suitable for training and 

evaluating deep learning models. 

Each case in the dataset includes four 

different MRI scans, with each modality capturing 

distinct anatomical and pathological features. 

Together, they provide a comprehensive view of 

the brain, which helps improve the accuracy of 

tumor segmentation. An overview of these 

modalities is provided in Table 1. 

 

Table 1. Description of the four MRI modalities used in the dataset [26]. 

Modality Description 

T1 T1-weighted structural MRI 

T1CE T1-weighted with contrast enhancement (gadolinium) 

T2 T2-weighted imaging, useful for fluid detection 

FLAIR Fluid-Attenuated Inversion Recovery, suppresses CSF to highlight lesions 

 

 
Figure 1. Visual comparison of the four MRI modalities 

 

Each imaging modality offers distinct 

structural and pathological information, and 

combining them allows for a more precise mapping 

of tumor subregions. The dataset includes voxel-

level annotations with four different classification 

labels. 

 

Segmentation Labels: 

The segmentation labels used in the 

dataset correspond to distinct tumor structures and 

are defined as follows 

 

Table 2.Segmentation labels used in the dataset 

[26]. 

Label Description 

0 Background 

1 Necrotic/Non-enhancing Tumor 

Core (NCR/NET) 

2 Edema (ED) 

4→3 Enhancing 

 

Sub-region combinations: 
Additionally, these labels can be combined to form 

clinically meaningful tumor sub-regions 
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Table 3. Label combinations representing tumor 

sub-regions[26]. 

Label Sub-region 

1 Tumor Core (TC) 

1, 2, 3 Whole Tumor (WT) 

3 Enhancing Tumor (ET) 

 

All images were manually segmented by 

four expert radiologists and validated by a board-

certified neuroradiologist. The preprocessing steps 

included skull stripping, resampling to a 1 mm³ 

resolution, and co-registration [27]. 

 

III. DATA AND IMAGE 

PREPROCESSING 
In the field of medical imaging, especially 

when dealing with MRI scans,it's common to 

encounter differences in image intensity, spatial 

resolution, and anatomical alignment. These 

inconsistencies can pose significant challenges 

when training deep learning models, as they 

introduce noise and reduce data reliability. To 

address these issues, we implemented a thorough 

preprocessing pipeline aimed at normalizing the 

data, enhancing key features, and preparing both 

images and corresponding labels for segmentation. 

The process is organized into two main 

components: image preprocessing and label 

preprocessing. 

 

3.1 Image Preprocessing 

Intensity Normalization 

MRI images often vary in brightness and 

contrast depending on the scanner type, imaging 

protocol, or even the patient being scanned. To 

reduce this variability and create a more consistent 

dataset, we applied normalization to each image. 

This technique standardizes the pixel intensity 

values so they center around a mean of zero with a 

standard deviation of one, helping the model better 

detect relevant structural patterns rather than being 

distracted by intensity differences [28]. 

 

Slice Selection 

Rather than using the entire 3D volume, 

we focused on axial slices that are most relevant for 

tumor analysis. Specifically, slices from index 22 to 

122 were extracted from each scan. This approach 

avoids slices that contain little to no brain tissue 

and ensures that the model concentrates on regions 

where tumors are typically found [3]. 

 

Cropping and Resizing 

To ensure uniform input dimensions 

suitable for convolutional neural networks, each 

selected slice was cropped and resized to 128 × 128 

pixels. This step helps maintain consistency across 

samples while also optimizing memory usage and 

training speed [29]. 

 

Data Augmentation 

To make our model more robust and 

prevent overfitting, we incorporated several data 

augmentation techniques during training. These 

included random horizontal and vertical flips, 

small-angle rotations, and changes in image 

intensity. By simulating different imaging 

conditions, these augmentations help the model 

generalize better to new, unseen data [30]. 

 

Input Modalities 

Each input sample was composed of two 

MRI sequences: FLAIR and T1CE. FLAIR images 

are particularly sensitive to areas of swelling or 

edema, while T1CE images are effective at 

showing regions of contrast uptake, often 

associated with active tumor tissue. Using both 

modalities together provided the model with richer 

and more complementary information for accurate 

tumor segmentation [25]. 

 

3.2 Label Preprocessing 

Label Remapping 

The original segmentation masks used 

four labels: 0, 1, 2, and 4. Since label 4 was not 

sequential (it represented the enhancing tumor), we 

remapped it to 3 to produce a clean, continuous 

label set. The final label scheme used in our study 

was: 

 

Table 4.Label Remapping. 

Label Description 

0 Background 

1 Necrotic/Non-enhancing 

Tumor Core (NCR/NET) 

2 Edema (ED) 

3 Enhancing Tumor (ET) 

 

This adjustment simplified data handling 

and ensured compatibility with standard categorical 

loss functions used in deep learning frameworks 

[32]. 

 

3.5 Model Architecture 

To perform brain tumor segmentation, we 

implemented a 2D U-Net architecture using 

TensorFlow 2.12 and Keras. U-Net is particularly 

effective for biomedical image segmentation, as it 

captures both local and global context while 

preserving spatial detail. Its encoder–decoder 
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structure, enhanced with skip connections, allows 

for precise reconstruction of tumor boundaries by 

combining low-level spatial features with high-

level semantic information [33]. 

 

U-Net Structure 

 Encoder Path: 

The encoder comprises four blocks. Each 

block includes two 2D convolutional layers (3×3 

kernels, ReLU activation, 'same' padding), 

followed by a 2×2 max-pooling operation for 

downsampling. The number of filters doubles at 

each level: 32, 64, 128, and 256. This progressive 

structure enables the network to extract 

increasingly abstract features [33]. 

 

 Bottleneck: 

At the network’s deepest layer, two 

convolutional layers with 512 filters each are 

followed by a dropout layer (rate = 0.2) to mitigate 

overfitting. 

 

 

 

 Decoder Path: 

The decoder mirrors the encoder with 

upsampling layers (via transposed convolutions), 

followed by convolutional blocks. Skip 

connections from corresponding encoder levels are 

concatenated to preserve spatial resolution. Filter 

sizes decrease symmetrically: 256, 128, 64, and 32. 

 

 Output Layer: 

The final layer is a 1×1 convolution with 

SoftMax activation, yielding a four-channel output 

that corresponds to the segmentation classes: 

background, necrotic core, edema, and enhancing 

tumor. 

 

Input and Output Specifications 

 Input Shape: Each input consists of two 

channels—FLAIR and T1CE—resulting in a 

shape of (128, 128, 2). 

 Output Shape: The model produces a 

segmentation map of shape (128, 128, 4), with 

class-wise probabilities for each tumor sub-

region. 

 

 
Figure 2.U-NET Structure [34]. 

 

Training Configuration 

 Frameworks: TensorFlow 2.12 and Keras 

 Loss Function: Categorical Crossentropy 

(suitable for multi-class segmentation) 

 Optimizer: Adam optimizer with a learning 

rate of 0.001 

 Regularization: Dropout (rate = 0.2) in the 

bottleneck layer 

 

Evaluation Metrics 

To comprehensively assess model 

performance, we used several evaluation metrics, 
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each providing insights into different aspects of 

segmentation quality [35, 36]: 

 

 Mean Intersection over Union (Mean IoU): 

Also known as the Jaccard Index, this 

metric evaluates the overlap between predicted and 

ground truth regions by computing the ratio of their 

intersection to their union: 

IoU =
 A ∩ B 

 A ∪ B 
 ………… (1) 

 

It offers a strict measure of segmentation accuracy 

and is computed per class before averaging. 

 Dice Similarity Coefficient (DSC): 

The Dice coefficient measures how 

closely the predicted segmentation matches the 

ground truth. It is especially useful for imbalanced 

data such as tumor regions: 

o Overall Dice: Aggregates segmentation 

performance across all classes. 

o Class-specific Dice: Computed separately for 

necrotic core, edema, and enhancing tumor 

regions. 

 

DSC =  
2  A ∩ B 

  A +  B  
 ………………. (2) 

 

 
 Precision: 

Indicates the proportion of predicted positive 

pixels that are actually positive. 

 

 Sensitivity (Recall): 

Also called the true positive rate, this metric 

measures the model’s ability to detect all actual 

tumor pixels: 

Sensitivity =  
TP

 TP  + FN 
 …………….. (3) 

 

 Specificity: 

Measures the proportion of correctly identified 

negative (background) pixels, helping assess 

false positive rates: 

Specificity =  
TN

 TN  + FP 
 ………………… (4) 

These metrics provide a balanced evaluation across 

detection accuracy, overlap, and class-specific 

segmentation—key for ensuring clinical reliability 

in automated tumor delineation systems. 

 

3.3 Training Strategy 

 Train/Val/Test split: 70% / 15% / 15% 

 Epochs: 30 

 Optimizer: Adam (learning rate = 0.001) 

 Callbacks:ReduceLROnPlateau, 

EarlyStopping, CSVLogger 

 Batch size: 1 (due to memory constraints) 

 Custom DataGenerator for real-time 

augmentation and loading 

 

IV. RESULTS 
The U-Net model was trained for 30 

epochs using TensorFlow and Keras. The best 

validation performance was observed at epoch 19, 

with the following results: 

 

Table 5:Overall Validation Metrics and 

Additional Performance Measures 

Metric Value 

Validation loss 0.0284 

Validation accuracy 98.84% 

Global Dice Coefficient 0.5139 

Precision 99.08% 

Specificity 99.69% 

 

Table 6: Validation per-class Dice (epoch 19): 

Tumor Sub-Region Validation Dice Score 

Necrotic Core 

(NCR/NET) 
0.4292 

Edema (ED) 0.4644 

Enhancing Tumor 

(ET) 
0.5895 

 

Training per-class Dice: 

 NCR/NET: 0.4920 

 ED: 0.6751 

 ET: 0.6251 

 

Table 7: Per-Class Dice Coefficients on the 

Training Set 

Tumor Sub-Region Training Dice 

Score 

Necrotic Core 

(NCR/NET) 

0.4920 

Edema (ED) 0.6751 

Enhancing Tumor (ET) 0.6251 

 

Minor overfitting was observed after epoch 19. 
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Figure 3. Segmentation: Input MRI, Ground Truth, and Prediction 

 

V. DISCUSSION 
The results of this work show that 

employing a 2D U-Net for brain tumor 

segmentation—by processing 3D MRI scans slice 

by slice—is a practical and effective strategy. 

Although this method doesn't leverage the 

complete 3D spatial context, it still performed well 

in identifying critical tumor regions like the Whole 

Tumor (WT), Tumor Core (TC), and Enhancing 

Tumor (ET). This aligns with earlier findings from 

BraTS evaluations that showed 2D models can still 

provide reliable results when properly trained [37]. 

 

Performance Observations 

The model showed stronger accuracy on 

larger and more consistent tumor components, such 

as the whole tumor and tumor core. However, 

segmenting the enhancing tumor region proved 

more difficult. This subregion often presents with 

irregular shapes and smaller volume, which tends 

to challenge even the best segmentation models—a 

limitation highlighted in various segmentation 

studies [38]. 

 

Model Advantages 

The U-Net’s encoder–decoder framework, 

along with its skip connections, proved highly 

beneficial for preserving fine spatial details while 

also capturing contextual information at multiple 

levels. This structure, originally designed for 

biomedical tasks, supports precise boundary 

delineation even with limited training data [33]. 

Furthermore, regularization techniques 

like dropout, combined with data augmentation 

strategies such as flipping and intensity shifts, 

helped improve the model’s generalization by 

reducing overfitting risk [39]. 

 

 

VI. CONCLUSION 
This thesis supports the effectiveness of a 

2D U-Net model for segmenting brain tumors from 

multimodal MRI data. Even without utilizing full 

volumetric information, the model successfully 

distinguished between key tumor components and 

achieved encouraging segmentation performance. 

The main benefit of this approach lies in 

its simplicity and efficiency. It doesn’t require 

extensive computational resources, making it 

accessible for both clinical research settings and 

practical deployment. The findings reinforce the 

potential of 2D convolutional models in medical 

image segmentation, especially when paired with 

thoughtful preprocessing and training strategies 

[40]. 
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