

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 118

Multi-Tenant yet Customizable Cloud

Native SaaS Web Application leveraging

AIML: Architecture & Strategies

Sunil S. Bilur1, Mahesh S. Salunkhe2

1
Student, Kolhapur Institute of Technology’s, College of Engineering, Kolhapur, India.

2
Associate Professor, Kolhapur Institute of Technology’s, College of Engineering, Kolhapur, India.

--- ----------------------------------

Date of Submission: 01-11-2024 Date of Acceptance: 10-11-2024

--- ----------

ABSTRACT:The rise of cloud-native architectures

has enabled the rapid development and deployment

of scalable Software-as-a-Service applications.

However, building multi-tenant systems that support

extensive customization for individual tenants

remains a challenge. This paper explores strategies

to overcome these challenges in the context of

developing an AI/ML-enhanced Enterprise

Resource Planning (ERP) system for educational

institutions. We propose a microservice-based

architecture that decouples AI/ML models from the

main application, dynamically generating UI

components, forms, routes, and implementing

flexible role-based access control (RBAC). This

architecture allows tenant-specific customization

without sacrificing the scalability, security, and

maintainability of a cloud-native system. Real-world

implementation details and strategies for

sustainability are discussed, along with challenges

faced.

KEYWORDS:Multi-tenant, Customizable, Cloud

Native, Sofware-as-a-service (SaaS), Web

Application, Software Architecture, Artificial

Intelligence, Machine Learning

I. INTRODUCTION
Cloud-native systems have revolutionized

how SaaS applications are developed, offering

scalability, flexibility, and lower operational costs.

However, the shift towards multi-tenancy—where

multiple clients i.e. tenants share a single and

common instance of the software—often leads to

challenges when attempting to provide

customizations specific to each tenant. Multi-tenant

systems tend to prioritize uniformity across tenants

to maintain simplicity, but in domains like

education, the need for tailored solutions is

paramount. Educational institutions often require

customizable workflows, user interfaces (UIs), and

role-based access control (RBAC) to fit their

specific operational requirements.

The architecture of a multi-tenant

application which provides significant tenant-

specific customization while ensuring system

scalability and maintainability can be complex.

Furthermore, deploying Artificial Intelligence and

Machine Learning (AIML) models as part of the

SaaS application adds another layer of complexity.

AIML services often require specific computational

resources and cannot easily coexist within the same

service as the main application. This paper presents

strategies to address these challenges through

dynamic component generation, microservices for

AIML, and flexible role-based access control.

Research Contributions

This paper contributes the following things to the

body of knowledge:

a) Proposing a microservices inspired architecture

that decouples AIML models from the main

application service which allows for its

independent scaling.

b) Introducing methods to dynamically generate

elements of web application like forms, routes,

and UI components to enable tenant-specific

customizations while maintaining scalability.

c) Developing a flexible, customizable RBAC

system where roles and permissions are

dynamically generated allowing to define a new

role and assign features to it.

d) Offering sustainability strategies to ensure that

customization does not impact scalability and

performance in cloud-native environments.

II. LITERATURE REVIEW
Multi-tenant SaaS application development

has been the subject of extensive research. This

section reviews existing work in these areas,

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 119

particularly around customizability in multi-tenant

systems. Although efficient in resource utilization,

multi-tenant systems are inherently less flexible

when it comes to tenant-specific customizations.

Research on multi-tenancy and SaaS primarily

focuses on scalability, resource allocation, and

tenant isolation, but not much attention has been

given to customizability at the tenant level.

 M. A. Rothenberger and M. Srite have

investigated why some enterprise ERP systems have

high level of customization despite generally

accepted best-practice of limiting customization [1].

Also, Hansen FH, Haddara M, Langseth M. have

surveyed the research on ERP system customization

[2]. F. Aslam has discussed the benefits and

challenges of customization within SaaS cloud

solutions [3].

 Qasem Ali A, Abd Ghani AA, Md Sultan

AB, Zulzalil H. conoducted an investigation in an

empirtical manner to study impact of software

customization on SaaS [4]. Ali, Hazura,

Abdulrazzaq Qasem and Md Sultan, Abdul Azim

and Zulzalil, Abu Bakar and Abd Ghani, have

delved into challenges related to customization in

SaaS, and then have mapped these challenges in

order to structure the study of SaaS customization

[5]. W. Sun, X. Zhang, P. Sun, C. J. Guo and H. Su

have explored issues and challenges faced by SaaS

vendors while doing customization and

configuration [6].

 R. Mietzner, F. Leymann, K. Pohl and A.

Metzger have discussed variability modeling

techniques from the field of software product line

engineering and how it can support SaaS providers

to manage variability and requirements in SaaS

application, they have also discussed orthogonal

variable model (OVM) [7]. N, Kurono and M.

Aoyama have extended the OVM model for

metadata driven architecture for multi-tenat cloud

apps or services [8].

 No matter what method is used to represent

the variability along with commonality, the

customization of saas for each tenant still remains a

challenge. A. B. M. Sultan, A. Q. Ali, H. Zulzalil

and A. A. A. Ghani have adopted a mapping

approach which systematic to study and

investigatesolutions that solve the SaaS

customization problems [9]. Various frameworks

have been proposed which supposedly ease the

development of SaaS. M. Choi and W. Lee have

proposed a web application framework to develop

SaaS applications [10]. Microservices

architectures have been widely adopted to improve

scalability, modularity, and maintainability of cloud-

native applications. Techniques related to

microservices have been researched for

customization of SaaS in multi-tenant environment.

H. Song, F. Chauvel and P. Nguyen have studied

and simplified the key concepts in customization of

multi-tenant systems. They have also described

high-level principles and design with a reference

architecture [11].

 L. P. Tizzei, R. F. G. Cerqueira, M. Nery

and V. C. V. B. Segura have illustrated development

of multi-tenant SaaS applications using

microservices and software product line techniques

[12]. P. H. Nguyen, H. Song, F. Chauvel, J.

Glattetre and T. Schjerpen have presented

experimental findings of the design of a novel

cloud-native architecture where they have

customized multi-tenant SaaS using microservices

[13]. H. Song, A. Solberg and F. Chauvel have

propsed a novel and fresh architectural style to do

customization of SaaS using microservices which

are intrusive in a deep manner [14].

 M. Makki, S. Walraven, D. Van Landuyt

and W. Joosen have presented a workflow

customization that makes it possible for application

vendors to keep mult-tenant customization concerns

and workflow design loosely coupled which results

into better manageability, the tenant preferences are

activated at runtime without sacrificing the

scalability and manageability [15]. M. Makki, B.

Lagaisse, W. Joosen and D. Van Landuyt have

analyzed and compared how the different

customization of business process strategies has

implications on the multi-tenant SaaS application

[16].

III. HIGH LEVEL ARCHITECTURE
The system accounting for scalability and

customizability in a multi-tenant application which

is discussed in this paper is shown is shown in fig. 1.

It is divided into two main parts as follows,

a) Main application

b) AIML service

Fig. 1

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 120

We are not concerned with the internal

architecture of both main application and AIML

service. Internally, they can be monolithic or

microservices but at top level these two parts are

like two services in a microservice architecture

which are deployed independently.

They communicate to each other over API. Only

signals are communicated over the API, Exchange

of large of amount of data over API is discouraged.

The database used by main application is shared by

AIML service.

Multi-Tenant Architecture Overview

A multi-tenant system serves multiple

clients by running a single instance of the

application. Tenants share the same codebase and

database schema, although each tenant's data is

logically isolated. This architecture allows for

efficient resource utilization but typically limits the

level of customizability for individual tenants. In

this ERP system, tenants require highly

customizable interfaces, leading to the need for

more flexible solutions.

Customization Challenges in Multi-Tenant

Systems

The core challenge of multi-tenant systems

is balancing scalability with customization. Adding

excessive customizability can strain system

performance, create security risks, and introduce

maintainability issues. It is not easy to offer multi-

tenant SaaS applications which are highly

customizable. This is the reason SaaS offerings are

generally designed to fit all users with a single

approach [17]. The key idea we have discussed in

this paper is to dynamically generate tenant-specific

components (e.g., user interface, forms, routes, etc.)

and use a role-based access control (RBAC) system

where roles are arbitrarily defined and permissions

are checked at runtime based on tenant needs.

IV. CUSTOMIZATION APPROACH
The essence of being able to do

customization in multi-tenant environment without

sacrificing manageability and without changing the

core of the application is dynamic generation of as

many elements of the application as possible. This

allows scalable and manageable development of

multi-tenant customizable SaaS application. The

dynamic generation is done based on some

declarative configuration or metadata.

All of the declarative configuration and

metadata is stored in tenant’s database. Based on the

architecture database switching might need to be

handled. If the app is server side rendered the

dynamic generation of required HTML is done on

server side, else if the app is client side rendered

then the frontend receives the declarative

configuration and based on it renders the frontend

HTML. Here frontend acts as an interpreter that

interprets the dynamic declaration and generates the

result.

Note that depending on the implementation

technology some things are technically harder or

cumbersome to implement in one that in the other.

For example, dynamic naming of routes is much

easier to implement in client side rendered

technologies like MEAN stack compared to

something which is server side rendered form

example in PHP

Dynamic User Interface and Navigation

The user interface can be defined largely as

a combination of navigation structure and page

layout shown for a particular link from the

navigation structure. The frontend is developed as a

set of components which get shown in the page. The

page layout is a grid which arranges the components

dynamically in the grid inside a structure of rows

and columns which are responsive.

This allows tenants to have different

navigation structure and each link from navigation

structure can have any set of components arranged

dynamically based on dynamic configuration which

defines components and how they are arranged into

rows and columns in the grid. The routes for each

link in the navigation structure are also generated

dynamically based on the declarative configuration.

Dynamic Form Generation

Form are one of the main elements of SaaS

web application. It is highly likely that each tenant

might need to input different data based on different

requirements and would like to customize forms. In

this case, it helps to generate form structure using a

declaration which lists out the form layout and other

information such as field types. Based on the

declaration stored in tenant’s database the form is

dynamically constructed at runtime. This method

ensures that each tenant can define unique forms

tailored to their need without required changes to

the core database.

Dynamic generation of the form to display

to the tenant on the frontend is only part of the story.

The data sent form the frontend via forms needs to

be stored in database. Since, the forms are

dynamically generated and can have any number of

fields having a schemeless document database such

as MongoDB, CouchDB etc. is of added advantage

here and eases the handling of schemeless nature of

data generated from the forms which needs to be

stored at the backend.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 121

Dynamic Roles and Access Control

As we discussed user interface, routes,

navigation and components grid are dynamically

generated and their declarative configuration is

grouped under particular role. A role is basically a

collection of these declarative configuration. It is

like a glue that binds together all the other important

configurations that allow for declarative

customization for that particular role. If we want to

add a new role, we create a new group of declaration

that declares and groups together user interface,

routes, navigation and components grid under a role.

Access control has been implemented per

component basis. This gives fine grained control on

access control. A declarative configuration is

declared for each component that gets loaded in

page layout. This declarative configuration tells

what part of the component the defined role has

access to. The configuration also lists out any

variation that needs to implemented for a particular

role for the given component.

The declarative configuration for access

control is tightly coupled with the user interface.

The idea behind making the access control tightly

coupled with user interface is that, a lot of times if a

user does not have access to something it will not be

shown in user interface or will be shown but in

disabled mode so access control is naturally tightly

coupled with user interface.

Binding pieces together and runtime generation

approach to customization

The effect of this approach towards

customization is the flexibility we get in defining

the customization for each tenant. If an application

is developed in this manner, we can define any user

interface having different page layout of different

features for any role which are again arbitrarily

defined with any access control and variation at

component level.

To summarize, Customization is provided through,

a) Binding various declarative configurations

together under a role defining the user interface

and thus features that the role will get access to.

b) Runtime generation of elements of the system.

V. MICROSERVICES FOR AIML

INTEGRATION
Decoupling AIML Deployment from main

application

Deploying AIML models within the same

monolithic service as the core application can lead

to resource contention and scaling challenges. To

resolve this, we implemented a microservice

architecture where AIML models are deployed in

isolated services. These services are responsible for

processing tenant-specific requests, such as

sentiment analysis on feedback forms or predictive

analytics for student performance. Microservice

architecture is used mainly to decouple the AIML

models from the core application. By doing this, we

reduce the complexity of the system and ensure that

AIML features can be updated or scaled

independently. Also, Microservices can simplify

development and project management, and can

eliminate the need for separate operations teams.

Programming Language Agnostic and

Leveraging Python community for AIML

In a microservices-based application,

developers can connect services written in different

programming languages and deployed on various

platforms. This flexibility allows teams to choose

the languages and technologies that best suit their

project requirements and expertise.

By being language-agnostic, teams can

swiftly embrace new technologies as they evolve, no

longer tied to a single technology stack, and free to

use the optimal tools for each task. E.g. you can use

high performant Rust backend for main application

and leverage huge python community for data

science and AIML to develop AIML service in

Python language.

Triggering AIML Services & Event-Driven

Model

The main application triggers AIML

services through API calls. The AIML

microservices are triggered by events from the main

application service. For example, when a new

feedback form is submitted, an event is fired to the

AIML service to analyse sentiment. This ensures

that AIML processing does not block the core

application’s performance and can be handled

asynchronously. The decoupling of AIML services

ensures that the main application remains

lightweight and performant, even as AIML models

evolve and become more computationally intensive.

Communication between main application and

AIML service

The main application and AIML service do

not exchange large amount of data directly over

network. The API between them is only to contact

signals and trigger the events in AIML services.

When AIML service gets triggered calculates the

result and stores it in the database and this result is

fetched by main application from the database. The

database is the common ground for these two

entities to exchange large amount of data.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 122

VI. CASE STUDY: CUSTOMIZABLE

ERP SYSTEM FOR EDUCATIONAL

INSTITUTIONS
This paper has been presented in context

of developing an ERP system for educational

institutions like schools and colleges and thus the

techniques presented here are well tested in real

world use case.

The ERP application for educational

institutions is built using MEAN stack and the

decoupled AIML microservice is built in Python

using Flask framework. The database used is

MongoDB. In traditional sense, the frontend is

significantly more complex than the backend. This

is because the declarative configuration is sent from

the backend to the frontend and frontend interprets

this configuration and generates results.

In the application, every user must have an

associate role and each role has a role_config

declared for it which holds the declarative

configuration for that role. A role_config is

basically declarative configuration that defines

everything about that role, it defines following

things

a) Navigation and entries that will be shown to

that role

b) Routes for entries in navigation

c) Customizable page layout which is basically a

grid of components

d) Variation and access control for any

component

A role_config can be declared as per the

requirement and assigned to a role. A role can then

be associated with users for which we want to have

those customization and features defined in

role_config. This approach to handling role-based

access control makes the system flexible as any

component grid with required customization can be

rendered for any role/user. Roles are created as per

requirement and not defined in advance.

Following is an example of role_config for admin

role

{

 "role": "admin",

 "pri_nav": [

 {

 "name": "Learning",

 "route": "lms"

 },

 {

 "name": "Notice Board",

 "route": "notices"

 },

 {

 "name": "Exam & Results",

 "route": "exams"

 },

 {

 "name": "Office Activities",

 "route": "office"

 }

],

 "sec_nav": {

 "lms": [

 {

 "type": "entry",

 "name": "Dashboard",

 "route": "dashboard",

 "comp": "comp2",

 "icon": "dashboard"

 },

 {

 "type": "entry",

 "name": "Admission",

 "route": "admission",

 "comp": [

 [

 "student-admission",

 {}

]

],

 "icon": "assign-user"

 },

 {

 "type": "entry",

 "name": "Student Information",

 "route": "student-info",

 "comp": [

 [

 "row",

 [

 "col",

 12,

 [

 "student-info-title",

 {}

],

 {}

]

],

 [

 "row",

 [

 "col",

 12,

 [

 "student-info-control-bar",

 {}

]

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 123

]

],

 [

 "row",

 [

 "col",

 12,

 [

 "student-info-table",

 {}

]

]

]

],

 "icon": "assign-user"

 },

 {

 "type": "menu",

 "entries": [

 {

 "name": "Feedback Management",

 "route": "feedback-management",

 "comp": [

 [

 "row",

 [

 "col",

 12,

 [

 "feedback-mgmt-title",

 {}

]

]

],

 [

 "row",

 [

 "col",

 6,

 [

 "feedback-mgmt-schedule",

 {

 "revoke": [

 "new_feedback"

]

 }

]

],

 [

 "col",

 6,

 [

 "feedback-mgmt-analysis",

 {}

]

]

]

],

 "options": "null"

 },

 {

 "name": "Feedback Questions",

 "route": "feedback-questions",

 "comp": [

 [

 "row",

 [

 "col",

 12,

 [

 "feedback-ques-title",

 {}

]

]

],

 [

 "row",

 [

 "col",

 12,

 [

 "feedback-ques-overview",

 {}

]

]

],

 [

 "row",

 [

 "col",

 8,

 [

 "feedback-ques-list",

 {}

]

],

 [

 "col",

 4,

 [

 "feedback-ques-tags-chart",

 {}

]

]

]

],

 "options": "null"

 }

],

 "name": "Feedback",

 "id": "feedback-menu",

 "icon": "form"

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 124

 }

]

 }

}

Explanation for role_config:

At top level in JSON we have

a) role – defines the name of the role

b) pri_nav – First level navigation

c) sec_nav – second level navigation

Think of pri_nav as tabs, where each

pri_nav will hold the `sec_nav`. The route field

in`pri_nav` document is the key name in `sec_nav`

i.e. routeparameter is used to link `sec_nav`

document to the `pri_nav` document. Essentially it

forms a tree like structure of navigation. The entries

in `sec_nav` can be either an entry or menu. If it is

a menu, it will further contain other entries, else if

it is an entry, it is the end of navigation tree. Upon

clicking the entry in `sec_nav` a grid of components

will be rendered. The grid of component is

generated from a declarative configuration which is

declared under `comp` key

The format of `comp` key’s value:

 The components are arranged in a grid.

The grid has 12 columns. The grammar of nested

elements and the grid have the following form

GRID = [ELEMS]

ELEMS = ELEM | ELEM ELEMS

ELEM = ["row", ELEMS]

| ["col", width (max 12), ELEMS]

|["component_name", "component configuration"]

The elements generated from the declarative

configuration are highlighted in figure shown at the

bottom of this page. Area highlighted by red border

and numbered as 1 shows primary navigation which

works as tabs and is generated from declarative

configuration `pri_nav`. Area numbered 2 is

secondary navigation generated form `sec_nav`.

There are three entries according to the declaration

followed by a feedback menu which contains two

entries. Note that changing the order of the entries

changes the order in the user interface. Each entry

is associated with a grid layout. The generated grid

is shown in blue border numbered as 3. The

arrangement of components and their associated

configuration is done declaratively. This grid is

declared under `comp` key in entry’s document.

The dark blue coloured dashed borders represent

the components. Note that the customization

parameters for each component like variation and

access control are hard coded into thefrontend and

any structure of document and parameters can be

chosen as per the requirement.

Collections that are important for

customizability and management

Institutions – stores the value of all the institutions

It holds tenant id called iid (institution id) which

uniquely recognizes the tenant among all the

tenants. It also stores other details of tenants like

name, short name, year of establishment and so on.

role_configs – stores all roles and their

configuration

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 125

Perhaps the most important collection, It stores the

declarative configuration of each role which

decides what gets rendered on the screen,

customization and access control of the rendered

components

users_current – the current users enrolled in the

institution

all the users from users to principal which can log

into the system are stored in users_current.

users_old - users which are not currently enrolled in

the institution

Even if a user is not associated with the institution,

no user is actually permanently deleted

forms – declarative configurations for forms

These forms are dynamically generated at runtime

Collections that represent academic structure of

institution

a) academic_programs – stores degree programs

e.g. bacherlor of technology, computer science

b) academic_departments – stores departments of

institutions, If the institution has no notion of

departments like for certain schools in such

cases at least one default department document

is present in this collection

c) academic_classes – classes groups together a

set of students

d) academic_courses – it holds a list of all courses

documents which are taught in the institution

These four collections are loosely coupled, in the

sense, that they can represent any educational

institution whether it is a school or college. The

design is chosen like this so that it can represent

any organization that has students in it, where

courses are taught.

The modules implemented in this ERP are

a) Admission Module

b) Student Information Module

c) Student Feedback Module

d) Leave Management Module

e) Library Management Module

Discussing every module in detail would

go out of scope and is not feasible in this paper but

the essence of how the customization technique is

used in the ERP have been discussed.

All of the modules demonstrate the

techniques used for customization so far. Every

tenant (educational institution) might choose to

input different information at the time of admission

from students so it requires different forms for each

tenant. Therefore, dynamic generation of forms is

implemented here. The declarative configuration

that is given to the frontend that decides what fields

will be generated is stored in each tenant’s metadata

collection with kind field given as dynamic form.

Student information module gives

information about students. Access control fields

implemented revoke_accesss in which if we specify

a field then that fields info is not show to that role

and all the users having that role

Sentiment analysis has been implemented

on student feedback module. When feedback is

over a signal is sent to the AIML service, which

then processes the input and stores the results into

database.

Users can apply for leaves, which go to

higher level of authority for approval. Once the

leave is approved then the leave is granted to the

user and shown to user. History of everything like

when was leave applied, when was it approved and

by whom was it approved is stored in database and

shown to users if they have proper access control.

VII. RESULTS AND DISCUSSION
ERP system, developed for educational

institutions, provides a real-world example of these

strategies in action. The system supports multiple

educational institutions with different user roles,

user interface, access control and data models. Each

tenant can configure their own user interface for

student admissions, course management, and

feedback collection. Building a customizable,

multi-tenant cloud-native system presents several

challenges, particularly around scalability and

maintainability. However, by decoupling AIML

services and dynamically generating customizable

components, we achieved a balance between

flexibility and performance. Future improvements

include expanding customization to include tenant-

specific data models and deeper AIML integration.

VIII. CONCLUSION
Multi-tenant SaaS systems inherently face

limitations in customization due to their shared

infrastructure, which prioritizes standardization and

uniformity across all tenants. This paper explored

solutions to the challenges of building a multi-

tenant system that supports extensive

customization, using the example of an educational

ERP system enhanced with AIML models. By

leveraging cloud-native technologies,

microservices, and dynamic generation of key

application components, we demonstrated how it is

possible to deliver a highly customizable

experience for individual tenants while maintaining

scalability and operational efficiency.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 126

One of the key contributions of this

research was the development of a microservice

architecture that decouples AI and ML models from

the main application. This separation not only

allows for independent scaling of computationally

intensive AIML services but also ensures that

updates to models can be made without impacting

the core functionality of the application.

Additionally, the ability to dynamically generate UI

components, forms, routes, and access controls at

runtime allows for extensive customization that

meets the specific needs of different educational

institutions. These customizations do not require

changes to the core system, making maintenance

simpler and reducing the risk of regressions.

While the presented strategies show

significant promise, the development of

customizable multi-tenant SaaS systems remains a

complex and evolving field. Future work is focused

on expanding the scope of customization,

potentially enabling clients/tenants to customize the

workflows. Additionally, continuous improvements

in flexibility of the system and the refinement of

access control strategies will be necessary to keep

pace with evolving requirements and technological

advancements.

REFERENCES
[1]. M. A. Rothenberger and M. Srite, "An

Investigation of Customization in ERP

System Implementations," in IEEE

Transactions on Engineering Management,

vol. 56, no. 4, pp. 663-676, Nov. 2009, doi:

10.1109/TEM.2009.2028319.

[2]. Hansen FH, Haddara M, Langseth M.

Investigating ERP System Customization: A

Focus on Cloud-ERP. Procedia Comput. Sci.,

vol. 219, Elsevier B.V.; 2023, p. 915–23.

https://doi.org/10.1016/j.procs.2023.01.367.

[3]. F. Aslam, "The Benefits and Challenges of

Customization within SaaS Cloud Solutions,"

Amer. J. Data, Inf. Knowl. Manag., vol. 4,

no. 1, pp. 14–22, 2023, doi:

10.47672/ajdikm.1543.

[4]. Qasem Ali A, Md Sultan AB, Abd Ghani

AA, Zulzalil H. An Empirical Investigation

of Software Customization and Its Impact on

the Quality of Software as a Service:

Perspectives from Software Professionals.

Applied Sciences. 2021; 11(4):1677.

https://doi.org/10.3390/app11041677

[5]. Ali, A. B. Md Sultan, A. Abd Ghani, and H.

Zulzalil, "Customization of Software as a

Service Application: Problems and

Objectives," J. Comput. Sci. Comput. Math.,

vol. 8, no. 3, pp. 27–32, Sep. 2018, doi:

10.20967/jcscm.2018.03.001.

[6]. W. Sun, X. Zhang, C. J. Guo, P. Sun and H.

Su, "Software as a Service: Configuration and

Customization Perspectives," 2008 IEEE

Congress on Services Part II (services-2

2008), Beijing, China, 2008, pp. 18-25, doi:

10.1109/SERVICES-2.2008.29.

[7]. R. Mietzner, A. Metzger, F. Leymann and K.

Pohl, "Variability modelling to support

customization and deployment of multi-

tenant-aware Software as a Service

applications," 2009 ICSE Workshop on

Principles of Engineering Service Oriented

Systems, Vancouver, BC, Canada, 2009, pp.

18-25, doi: 10.1109/PESOS.2009.5068815.

[8]. M. Aoyama and N. Kurono, "An Extended

Orthogonal Variability Model for Metadata-

Driven Multitenant Cloud Services," 2013

20th Asia-Pacific Software Engineering

Conference (APSEC), Bangkok, Thailand,

2013, pp. 339-346, doi:

10.1109/APSEC.2013.53.

[9]. Q. Ali, A. B. M. Sultan, A. A. A. Ghani and

H. Zulzalil, "A Systematic Mapping Study on

the Customization Solutions of Software as a

Service Applications," in IEEE Access, vol.

7, pp. 88196-88217, 2019, doi:

10.1109/ACCESS.2019.2925499.

[10]. W. Lee and M. Choi, "A Multi-tenant Web

Application Framework for SaaS," 2012

IEEE Fifth International Conference on

Cloud Computing, Honolulu, HI, USA, 2012,

pp. 970-971, doi: 10.1109/CLOUD.2012.27.

[11]. H. Song, P. Nguyen, and F. Chauvel, "Using

Microservices to Customize Multi-Tenant

SaaS: From Intrusive to Non-Intrusive,"

2019. doi:

10.4230/OASIcs.Microservices.2017/2019.1.

[12]. L. P. Tizzei, M. Nery, V. C. V. B. Segura,

and R. F. G. Cerqueira, "Using Microservices

and Software Product Line Engineering to

Support Reuse of Evolving Multi-tenant

SaaS," in Proc. 3rd Int. Workshop Softw.

Eng. Smart Cyber-Physical Syst. (SEsCPS),

New York, NY, USA, 2017, pp. 22–28, doi:

10.1145/3106195.3106224.

[13]. H. Song, P. H. Nguyen, F. Chauvel, J.

Glattetre and T. Schjerpen, "Customizing

Multi-Tenant SaaS by Microservices: A

Reference Architecture," 2019 IEEE

International Conference on Web Services

(ICWS), Milan, Italy, 2019, pp. 446-448, doi:

10.1109/ICWS.2019.00081.

[14]. H. Song, F. Chauvel, and A. Solberg, "Deep

customization of multi-tenant SaaS using

International Journal of Advances in Engineering and Management (IJAEM)

Volume 6, Issue 11 Nov. 2024, pp: 118-127 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0611118127 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 127

intrusive microservices," in Proc. 40th Int.

Conf. Softw. Eng.: New Ideas and Emerging

Results (ICSE-NIER), New York, NY, USA,

2018, pp. 97–100, doi:

10.1145/3183399.3183407.

[15]. M. Makki, D. Van Landuyt, S. Walraven, and

W. Joosen, "Scalable and manageable

customization of workflows in multi-tenant

SaaS offerings," in Proc. 31st Annu. ACM

Symp. Appl. Comput. (SAC), New York,

NY, USA, 2016, pp. 432–439, doi:

10.1145/2851613.2851627.

[16]. M. Makki, D. Van Landuyt, B. Lagaisse, and

W. Joosen, "A comparative study of

workflow customization strategies: Quality

implications for multi-tenant SaaS," J. Syst.

Softw., vol. 144, pp. 423-438, 2018, doi:

10.1016/j.jss.2018.07.014.

[17]. H. Moens and F. De Turck, "Feature-Based

Application Development and Management

of Multi-Tenant Applications in Clouds," in

Proc. 18th Int. Software Product Line Conf.

(SPLC), vol. 1, pp. 72-81, 2014, doi:

10.1145/2648511.2648519.

