

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 199

Random Forest Hyperparameter Tuning in

Machine Learning for Improved

Performance in Intrusion Detection

Systems

Dr. Amaku Amaku1, Dr. Igbinosa O. G 2, Dr. Kingsley

Okorie3, Amodu Felix4
1Department of Computer Science, Veritas University, Abuja, Nigeria.

2Department of Electrical/Electronic and Telecoms Engineering , Bells University,Nigeria.

3Department ofComputer Science, Enugu State university of Science and Technology , Nigeria.

42Department of Electrical/Electronic and Telecoms Engineering , Bells University, Nigeria.

--- ----------

Date of Submission: 05-01-2025 Date of Acceptance: 15-01-2025

--- ----------

ABSTRACT

In recent times, researchers have been proposing

different Intrusion Detection methods to deal with

the increasing number and complexity of threats as

technology keeps emerging. In this context,

Random Forest models have been providing a

notable performance on her predictive capacity to

applications in the realm of behavioural-based

Intrusion Detection Systems and other related

fields of specialization which includes medicines,

Banking, commerce, etc in terms high magnitude

forecasting and optimal predictions . In this work,

in-depth evaluation analysis of the Random Forest

tuning were carried out with respect to

classification, feature selection, and proximity

metrics. This empirical research will provide an

inclusive review of the general basic concepts

related to Intrusion Detection Systems, which

includes taxonomies, data collection, modeling and

evaluation metrics. Furthermore, the manual

hyperparameter tuning technique was used for this

research work and a desirable experimental output

was achieved as showed in this work.

Key Words: Random Forest, Machine Learning,

Optimization, Hyperparamenters, Classification,

Evaluation Metrics.

I. INTRODUCTION
MACHINE LEARNING

Machine learning (ML) algorithms have

been widely used in many applications domains,

including advertising, recommendation systems,

computervision, natural language processing, and

user behavior analytics (Jordan & Michell,2015).

This is because they are generic and demonstrate

high performance in data analytics problems.

Different ML algorithms are suitable for different

types of problems or datasets (Ziler& Huber,2019).

In general, building an effective machine learning

model is a complex and time-consuming process

that involves determining the appropriate algorithm

and obtaining an optimal model architecture by

tuning its hyper-parameters (HPs) (Shawi ,et

al,2019). Two types of parameters exist in machine

learning models: one that can be initialized and

updated through the data learning process (e.g., the

weights of neurons in neural networks), named

model parameters; while the other, named hyper-

parameters, cannot be directly estimated from data

learning and must be set before training a ML

model because they define the architecture of a ML

model (Kuhn & John, 2013). Hyper-parameters are

the parameters that are used to either configure a

ML model (e.g., the penalty parameter C in a

support vector machine, and the learning rate to

train a neural network) or to specify the algorithm

used to minimize the loss function (e.g., the

activation function and optimizer types in a neural

network, and the kernel type in a support vector

machine) (Diaz et al, 2017). To build an optimal

ML model, a range of possibilities must be

explored. The process of designing the ideal model

architecture with an optimal hyper-parameter

configuration is named hyper-parameter tuning.

Tuning hyper-parameters is considered a key

component of building an effective ML model,

especially for tree-based ML models and deep

neural networks, which have many hyper-

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 200

parameters (Hutter et al,2019). Hyper-parameter

tuning process is different among different ML

algorithms due to their different types of hyper-

parameters, including categorical, discrete, and

continuous hyper-parameters (Decastro-Garca et

al,2019). Manual testing is a traditional way to tune

hyper-parameters and is still prevalent in graduate

student research, although it requires a deep

understanding of the used ML algorithms and their

hyper-parameter value settings (Abreu, 2019).

However, manual tuning is ineffective for many

problems due to certain factors, including a large

number of hyper-parameters, complex models, time

consuming model evaluations, and non-linear

hyper-parameter interactions. These factors have

inspired increased research in techniques for

automatic optimization of hyper-parameters; so-

called hyper-parameter optimization. (HPO)

(Steinholtz,2018). The main aim of HPO is to

automate hyper-parameter tuning process and make

it possible for users to apply machine learning

models to practical problems effectively (Shawi ,et

al,2019). The optimal model architecture of a ML

model is expected to be obtained after a HPO

process. Some important reasons for applying HPO

techniques to ML models are as follows (Hutter et

al,2019):

1. It reduces the human effort required, since many

ML developers spend considerable time tuning the

hyper-parameters, especially for large datasets or

complex ML algorithms with a large number of

hyper-

parameters.

2. It improves the performance of ML models.

Many ML hyper-parameters have different

optimums to achieve best performance in different

datasets or problems.

3. It makes the models and research more

reproducible. Only when the same level of hyper-

parameter tuning process is implemented can

different ML algorithms be compared fairly; hence,

using a same HPO method on different ML

algorithms also helps to determine the most

suitable ML model for a specific problem.

It is crucial to select an appropriate optimization

technique to detect optimal hyper-parameters.

Traditional optimization techniques may be

unsuitable for HPO problems, since many HPO

problems are non-convex or non-differentiable

optimization problems, and may result in a local

instead of a global optimum (Lou, 2016). Gradient

descent-based methods are a common type of

traditional optimization algorithm that can be used

to tune continuous hyper-parameters by calculating

their gradients (Maclaurin et al, 2015). For

example, the learning rate in a neural network can

be optimized by a gradient-based method.

Compared with traditional optimization methods

like gradient descent, many other optimization

techniques are more suitable for HPO problems,

including decision-theoretic approaches, Bayesian

optimization models, multifidelity optimization

techniques, and metaheuristics algorithms

(Decastro-Garca et al,2019). Apart from detecting

continuous hyper-parameters, many of these

algorithms also have the capacity to effectively

identify discrete, categorical, and conditional

hyper-parameters. Decision-theoretic methods are

based on the concept of defining a hyper-parameter

search space and then detecting the hyper-

parameter combinations in the search space,

ultimately selecting the best-performing hyper-

parameter combination.

Bergstra et al, 2019 concluded that Grid

search (GS) is a decision-theoretic approach that

involves exhaustively searching for a fixed domain

of hyper-parameter values. . James & Yoshua,2019

also discussed Random search (RS) as another

decision-theoretic method that randomly selects

hyper-parameter combinations in the search space,

given limited execution time and resources. In GS

and RS, each hyper-parameter configuration is

treated independently.

1.2 DECISION TREE

Decision Tree is a graphical representation

of all possible solutions to a decision, decision tree

is based on some conditions and it can be easily be

explained. It represents a function that takes as

Input a vector of attribute values and returns a

“decision” – a single output value.

Decision tree is a flow-chart-like tree

structure that uses a branching method to illustrate

every possible outcome of a decision. Each node

within the tree represents a test on a specific

variable- and each branch is the outcome of that

test. It is also a simple flowchart that selects labels

for input values.

This flowchart consists of decision nodes,

which check feature values, and leaf nodes, which

assign labels. To choose the label for an input

value, we begin at the flowchart’s initial decision

nodes, known as its roots node. This node contains

a condition that checks one of the input value’s

features, and selects a branch based on that features

value. Following the branch that describes our

input value, we arrive at a new decision node, with

a new condition on the input value’s features. We

continue following the branch selected by each

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 201

node’s condition, until we arrive at a leaf node

which provides a label for the input value.

Decision tree algorithm falls under the

category of supervise learning. They can be used to

solve both regression and classification problems.

A decision tree reaches its decision by performing

a sequence of tests.

For Example

Figure 1.1 Decision Tree Learning Algorithm

ID3 (Iterative Dichotomies 3)

 ID3 is on of the most common decision tree

algorithm.

 Dichotomies means dividing into two

completely opposite things.

 Algorithm iterative divides attribute into two

groups are the most dominant attribute and

others to construct a tree.

 Then, it calculate the Entropy and information

gain of each attribute. In this way, the most

dominant attribute can be founded.

 After then, the most dominant one is put on the

tree as decision node. For

 Entropy and gain scores would be calculated

again among the other attributes.

 Procedure continues until reaching a decision

for that branch.

Formulas:

Entropy(s) = Є – P(I) . LogP2 (I)

…………………….. (1)

Gain (S,A) = Entropy(s) – Є [P(S/A) . Entropy

(S/A)] -------------------------- (2)

A decision tree is also a simple flowchart

that selects labels for input values. This flowchart

consists of decision nodes, which check feature

values, and leaf nodes, which assign labels. To

choose the label for an input value, we begin at the

flowchart’s initial decision nodes, known as its

roots node. This node contains a condition that

checks one of the input value’s features, and selects

a branch based on that features value. Following

the branch that describes our input value, we arrive

at a new decision node, with a new condition on the

input value’s features. We continue following the

branch selected by each node’s condition, until we

arrive at a leaf node which provides a label for the

input value.

Once we have a decision tree, it is

straightforward to use it to assign labels to new

input values. What’s less straightforward is how we

can build a decision tree that models a given

training set. But before we look at the learning

algorithm for building decision tress, we’ll consider

a simpler task: picking the best “decision stump”

for a corpus.

A decision stump is a decision tree with a

single node that decides how to classify inputs

based on a single feature. It contains one leaf for

each possible feature value, specifying the class

label that should be assigned to inputs whose

features have that value. In order to build a

decision stump, we must first decide which features

should be used. The simplest method is to just

build a decision stump for each possible feature,

and see which one achieves the highest accuracy on

the training data, although there are other

alternatives that we will discuss later. Once we’ve

picked a feature, we can build the decision stump

by assigning a label to each based on the most

frequently for the selected examples in the training

set (i.e. the examples where the selected feature has

that value).

Given the algorithm for choosing decision

stumps, the algorithm for growing larger decision

tress is straightforward. We begin by selecting the

overall best decision stump for the classification

task. We then check the accuracy of each of the

leaves on the training set. Leaves that do not

achieve sufficient accuracy are then replaced by

new decision stumps, trained on the subset of the

training corpus that is selected by the path to the

leaf.

1.3 Entropy and information Gain

There are several methods for identifying

the most informative feature for a decision stump.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 202

One popular alternative called information

gain,measures how much more organized the input

values become when we divide them up using a

given feature. How disorganized the original set of

input values are, we calculate entropy of their

labels, which will be high if the input values have

highly varied labels, and how if many input values

all have the same label. In particular, entropy is

defined as the sum of the probability of each label

times the log probability of that same label:

H = Ƹl ϵ labels P (l) * log2P (l).

……………………………………. (3)

For example, Figure above shows how the

entropy of labels in the weather prediction task

depends on the ratio of sunny to outcast to raining

attributes names. Note that if

 Most input values have the same label

(e.g., if P(sunny) is near 0 or near 1), then entropy

is low. In particular, labels that have low frequency

do not contribute much to the entropy (since P(l) is

small), and labels with high frequency also do not

contribute much to the entropy (since log2P(l) is

small). On the other hand, if the input values have a

wide variety of labels, then there are many labels

with a “medium” frequency, where neither P(l) nor

log2P(l) is small, so the entropy is high.

Once we have calculated the entropy of

the label of the original set of input values, we can

determine how much more organized the labels

become once we apply the decision stump. To do

so, we calculate the entropy for each of the decision

stump’s leaves, and take the average of those leaf

entropy values (weighed by the number of samples

in each leaf). The information gain is then equal to

the original entropy minus this new reduced

entropy. The higher the information gain, the better

job the decision stump does of dividing the input

values into coherent groups, so we can build

decision trees by selecting the decision stumps with

the highest information gain.

Another consideration for decision tree is

efficiency. The simple algorithm for selecting

decision stumps described earlier must construct a

weather decision stump for every possible feature,

and this process must be repeated for every node in

the constructed decision tree. A number of

algorithms have been developed to cut down on the

training time by storing and reusing information

about previously evaluated examples.

However, decision trees also has a few

disadvantages. One problem is that, since each

branch in the decision tree splits the training data,

the amount of training data available to train nodes

lower in the tree can become quite small. As a

result, these lower decision nodes may overfit the

training set, learning patterns that reflect

idiosyncrasies of the training set rather than

linguistically significant patterns in the underlying

problem. One solution to this problem is to stop

diving nodes once the amount of training data

becomes too small. Another solution is to grow a

full decision tree, but then to prune decision nodes

that do not improve performance on a dev-test.

A second problem with decision trees is

that they force features to be checked in a specific

order, even when features may act relatively

independently of one another. For example, when

classifying documents into topics (such as a sports,

automotive, or murder mystery), features such as

has word (football) are highly indicating of a

specific label, regardless of what the other feature

value are. Since there is limited space near the top

of the decision tree, most of these features will

need to be repeated on many different branches in

the tree. And since the number of branches

increases exponentially as we go down the tree, the

amount of repetition can be very large.

A related problem is the decision trees are

not good at making use of features that re weak

predictors of the correct label. Since these features

make relatively small incremental improvements,

they tend to occur very low in the decision tree. But

by the time the decision tree learner has descended

far enough to use these features, there is not

enough training data left to reliable determine what

effect they should have. If we could instead look at

the effect of these features across the entire training

set, then we might be able to make some

conclusions about how they should affect the

choice of label.

The face that decision trees require that

features be checked in a specific order limits their

ability to exploit features that are relatively

independent of one another.

Computer security is the ability to protect

a computer system and its resources in reference to

Confidentiality, Integrity and Availability (Urasva,

2015). The main goal of any Intrusion Detection

System is to detect attacks. Random forests

(Breiman, 2001) are considered as one of the most

successful general-purpose algorithms in modern-

times (Biau and Scornet, 2016). They can be

applied to a wide range of learning tasks, but most

prominently to classification and regression. A

random forest is an ensemble of trees, where the

construction of each tree is random. After building

an ensemble of trees, the random forest makes

predictions by averaging the predictions of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 203

individual trees. Random forests often make

accurate and robust predictions, even for very high-

dimensional problems (Biau, 2012), in a variety of

applications (Criminisi and Shotton, 2013; Belgiu

and Dr˘agut¸, 2016; D´ıaz-Uriarte and Alvarez de

Andr´es, 2006). Recent theoretical works have

established a series of consistency results of

different variants of random forests, when the

forests’ parameters are tuned in certain ways

(Scornet, 2016;Scornet et al., 2015; Biau, 2012;

Biau et al., 2008).Random forest has nearly the

same hyperparameters as a decision tree or a

bagging classifier. Furthermore, knowing the

attacks and how they are classified is important to

enable better comprehension and critical analysis.

In Table 1 represent the first dimension of the

attack taxonomy proposed by Hansman and Hunt

(2005), which is used in other works (e.g., Bhuyan

et al. (2014), Ghorbani et al. (2010), and Sperotto

et al. (2010)) and provides a good understanding

about attacks on networks.

In the literature, there are a variety of

attack taxonomies devoted to specific major attack

types or attacked systems or protocols, such as

DDoS attacks (Mirkovic and Reiher 2004), cloud

systems (Juliadotter and Choo 2015; Mishra et al.

2017), web applications (Alvarez and Petrovic

2003; Watson 2007), Supervisory Control and Data

Acquisition (SCADA) systems (Zhu et al. 2011),

protocol DNP3 that is usually used in SCADA

systems (East et al. 2009), P2P communication

(Yue et al. 2009), embedded systems (Papp et al.

2015), botnets (Dagon et al. 2007), and the Internet

infrastructure, for example, attacks on the Border

Gateway Protocol (BGP) used for routing in the

Internet (Chakrabarti and Manimaran 2002).

Taxonomies also can be oriented to attack response

(Souissi and Serhrouchni 2014; Wu et al. 2011),

target systems, causes, impact, time, among other

characteristics. In 2008, Igure and Williams had

explored on classical attacks on taxonomies.

RESEARCH DESIGN
 This research work deals with an

optimization of behavioral based random forest

algorithm as a machine learning tool in intrusion

detection systems. The research methodology will

effectively discuss possible directions which this

research work will take in order to achieve its

objectives. The detailed information on the process

involved in data acquisition will be presented also.

Hyperparameters are important for machine

learning algorithms since they directly control the

behaviors of training algorithms and have a

significant effect on the performance of machine

learning models. Several techniques have been

developed and successfully applied for certain

application domains. This research work has

proposed a technique which will improve a

dataset's data content by translating it into a brand

new feature subspace of lower dimensionality than

the original. Normally machine learning algorithm

transforms a problem that needs to be solved into

an optimization problem and uses different

optimization methods to solve the problem. The

optimization function is composed of multiple

hyperparameters that are set prior to the learning

process and affect algorithm performance of the

model.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 204

Fig 3.2 Program Flowchart

Fig 3.3 dataset in csv(comer separated values) format file

The Info on dataset used is given below:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 125973 entries, 0 to 125972

Data columns (total 42 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 'duration' 125973 non-null int64

 1 'protocol_type' 125973 non-null object

 2 'service' 125973 non-null object

 3 'flag' 125973 non-null object

 4 'src_bytes' 125973 non-null int64

 5 'dst_bytes' 125973 non-null int64

 6 'land' 125973 non-null int64

 7 'wrong_fragment' 125973 non-null int64

 8 'urgent' 125973 non-null int64

 9 'hot' 125973 non-null int64

10 'num_failed_logins' 125973 non-null int64

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 205

11 'logged_in' 125973 non-null int64

12 'num_compromised' 125973 non-null int64

13 'root_shell' 125973 non-null int64

14 'su_attempted' 125973 non-null int64

15 'num_root' 125973 non-null int64

16 'num_file_creations' 125973 non-null int64

17 'num_shells' 125973 non-null int64

18 'num_access_files' 125973 non-null int64

19 'num_outbound_cmds' 125973 non-null int64

20 'is_host_login' 125973 non-null int64

21 'is_guest_login' 125973 non-null int64

22 'count' 125973 non-null int64

23 'srv_count' 125973 non-null int64

24 'serror_rate' 125973 non-null float64

25 'srv_serror_rate' 125973 non-null float64

26 'rerror_rate' 125973 non-null float64

27 'srv_rerror_rate' 125973 non-null float64

28 'same_srv_rate' 125973 non-null float64

29 'diff_srv_rate' 125973 non-null float64

30 'srv_diff_host_rate' 125973 non-null float64

31 'dst_host_count' 125973 non-null int64

32 'dst_host_srv_count' 125973 non-null int64

33 'dst_host_same_srv_rate' 125973 non-null float64

34 'dst_host_diff_srv_rate' 125973 non-null float64

35 'dst_host_same_src_port_rate' 125973 non-null float64

36 'dst_host_srv_diff_host_rate' 125973 non-null float64

37 'dst_host_serror_rate' 125973 non-null float64

38 'dst_host_srv_serror_rate' 125973 non-null float64

39 'dst_host_rerror_rate' 125973 non-null float64

40 'dst_host_srv_rerror_rate' 125973 non-null float64

41 'class' 125973 non-null object

dtypes: float64(15), int64(23), object(4)

memory usage: 40.4+ MB

Following the collection of data obtained,

the data collected was checked for the presence of

error in data entry including misspellings and

missing data. Following this process, there was no

error in misspelling of any data in the record.

HANDLING MISSING VALUE (This is to check which feature contains missing values

print(df.isnull().sum())

'duration' 0

'protocol_type' 0

'service' 0

'flag' 0

'src_bytes' 0

'dst_bytes' 0

'land' 0

'wrong_fragment' 0

'urgent' 0

'hot' 0

'num_failed_logins' 0

'logged_in' 0

'num_compromised' 0

'root_shell' 0

'su_attempted' 0

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 206

'num_root' 0

'num_file_creations' 0

'num_shells' 0

'num_access_files' 0

'num_outbound_cmds' 0

'is_host_login' 0

'is_guest_login' 0

'count' 0

'srv_count' 0

'serror_rate' 0

'srv_serror_rate' 0

'rerror_rate' 0

'srv_rerror_rate' 0

'same_srv_rate' 0

'diff_srv_rate' 0

'srv_diff_host_rate' 0

'dst_host_count' 0

'dst_host_srv_count' 0

'dst_host_same_srv_rate' 0

'dst_host_diff_srv_rate' 0

'dst_host_same_src_port_rate' 0

'dst_host_srv_diff_host_rate' 0

'dst_host_serror_rate' 0

'dst_host_srv_serror_rate' 0

'dst_host_rerror_rate' 0

'dst_host_srv_rerror_rate' 0

'class' 0

dtype: int64

7 Evaluation Metrics

The evaluation metrics generated from this research

work is given below;

Parameter distribution of random forest used for

the randomized search

Number of trees to use for building the random

forest

n_estimators = [int(x) for x in np.linspace(start =

10, stop = 80, num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [2,4]

Minimum number of samples required to split a

node

min_samples_split = [2, 5]

Minimum number of samples required at each

leaf node

min_samples_leaf = [1, 2]

criterion =['gini', 'entropy']

Method of selecting samples for training each

tree

bootstrap = [True, False]

Parameter distribution code

Create the param grid

param_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'criterion' :criterion,

 'bootstrap': bootstrap}

print(param_grid)x

OPTIMISED HYPERPARAMETER TUNNING

OF RANDOM FOREST CLASSIFIER RESULT

Cross Validation at 10 fold

fitting 10 folds for each of 10 candidates, totalling

100 fits

RandomizedSearchCV(cv=10,

estimator=RandomForestClassifier(), n_jobs=4,

param_distributions={'bootstrap': [True, False],

 'criterion': ['gini',

'entropy'],

 'max_depth': [2, 4],

 'max_features': ['auto',

'sqrt'],

 'min_samples_leaf': [1, 2],

 'min_samples_split': [2,

5],

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 207

 'n_estimators': [10, 17, 25,

33, 41, 48,

 56, 64, 72,

80]},

verbose=2)

Best Parameter Result Generated From the

Parameter Range Provided

rf_RandomGrid.best_params_

{'n_estimators': 72,

 'min_samples_split': 5,

 'min_samples_leaf': 2,

 'max_features': 'sqrt',

 'max_depth': 4,

 'criterion': 'entropy',

 'bootstrap': True}

Optimized Hyperparameter Tuning Of Random

Forest Classifier Result

Train Accuracy - : 97.833%

COMPARATIVE ANALYSIS RESULT WITH

OTHER RELATED MACHINE LEARNING

ALGORITHM

The optimized value (accuracy) obtained from this

research work is later compared with other

algorithm. The results is shown below

Naive Bayes Algorithm Result

fromsklearn.model_selectionimporttrain_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,t

est_size=0.2,random_state=9) #Split the dataset

fromsklearn.naive_bayesimportGaussianNB

nv=GaussianNB() # create a classifier

nv.fit(X_train,y_train) # fitting the data

fromsklearn.metricsimportaccuracy_score

y_pred=nv.predict(X_test) # store the prediction

data

#accuracy_score(y_test,y_pred) # calculate the

accuracy

print("Accuracy of Naive Bayes Algorithm is :

{}".format(accuracy_score(y_test,y_pred)*100))

Accuracy of Naive Bayes Algorithm is :

52.92716808890653

Logistic Regression

importmatplotlib.pyplotasplt

importnumpyas np

fromsklearn.linear_modelimportLogisticRegressio

n

fromsklearn.metricsimportclassification_report,

confusion_matrix

model=LogisticRegression(solver='liblinear',

random_state=0)

model.fit(X, y)

LogisticRegression(C=1.0, class_weight=None,

dual=False, fit_intercept=True,

intercept_scaling=1, l1_ratio=None, max_iter=100,

multi_class='warn', n_jobs=None, penalty='l2',

random_state=0, solver='liblinear', tol=0.0001,

verbose=0,

warm_start=False)

model=LogisticRegression(solver='liblinear',

random_state=0).fit(X, y)

model.predict(X)

model.score(X, y)*100

Accuracy: 88.57215435053544

RANDOM FOREST CLASSIFIER

fromsklearn.ensembleimportRandomForestClassif

ier

fromsklearn.metricsimportconfusion_matrix

fromsklearn.metricsimportclassification_report

fromsklearn.metricsimportaccuracy_score

rf=RandomForestClassifier(n_estimators=50,min_s

amples_leaf=0.2,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print("Accuracy of Random Forest model is :

{}".format(accuracy_score(y_test,pred)*100))

Accuracy of Random Forest model is : 91.82

SUPPORT VECTOR MACHINE

fromsklearn.model_selectionimporttrain_test_split

X_train, X_test, y_train, y_test=train_test_split(X,

y, test_size=0.2)

fromsklearn.svmimport SVC

svclassifier= SVC(kernel='rbf', degree=8)

svclassifier.fit(X_train, y_train)

y_pred=svclassifier.predict(X_test)

fromsklearn.metricsimportclassification_report,

confusion_matrix

fromsklearn.metricsimportaccuracy_score

print("Accuracy of the Support Vector Machine

model is : {}".format(accuracy_score(y_test,y_pred

)*100))

Accuracy of the Support Vector Machine model is :

53.70

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 208

S/N ESTIMATORS MIN. SAMPLE LEAF RANDOM STATE ACCURACY (%)

1 100 80 50 98.80

2 200 150 100 98.55

3 200 250 150 98.32

4 500 250 200 98.32

5 500 300 250 97.67

6 50 30 32 99.36

7 50 45 42 99.24

8 50 25 32 99.37

9 30 18 21 99.48

10 20 13 25 99.51

11 10 8 15 99.57

12 5 3 6 99.63

13 5 2 3 99.68

Table 1. 1. Experimental summary on manual hyperparameter tuning.

II. DISCUSSION ON TABLE 1
This section of experiment was carried out

with selected numbers of hyperparameter values

which included the numbers of estimators,

minimum sample leaf and random state, results of

the experiments clearly stated below the table.

When the value of the estimator was set at 500,

Min. Sample leaf 300 and Random state 250, it

was observed the performance in outcome with

respect to accuracy declined, which implies that the

greater the numbers of trees on the nodes, the less

predictive the accuracy of the outcome. It was also

observed that when the estimatorsvalue was set on

5, Min. Sample leaf 2 and Random state at 3, the

efficiency on the outcome was greatly achieved.

This is just a phase testing of my model to

check for correctness on predictive purpose, and

this is also a manual phase on my software module.

Fig 4.3 Graph depicting accuracy level of the manual hyperparameter tuning.

96.5

97

97.5

98

98.5

99

99.5

100

Estimator 5 Estimator 50 Estimator 100 Estimator 500

ACCURACY

ACCURACY

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 209

REFERENCES
[1]. Barreiros M, Lundqvist P (2011). QoS-

Enabled Networks: Tools and

Foundations. West Sussex, UK: John

Wiley & Sons.

[2]. Bhoyar, R., Ghonge, M., Gupta, S., 2013.

Comparative study on IEEE standard of

wireless LAN/Wi-Fi 802.11 a/b/g/n. Int. J.

Adv. Res. Electron. Commun. Eng.

(IJARECE) 2 (7).

[3]. Chiu DM, Sudama R (1992). Network

monitoring explained: design and

application. Ellis Horwood Series in

Computer Communications and

Networking.

[4]. Cisco (2008). Performance Management

Best Practices for Broadband Service

Providers. USA: Cisco Systems Inc.

[5]. Feng, P. 2012. Wireless LAN security

issues and solutions. In: Robotics and

Applications (ISRA), 2012 IEEE

Symposium on (pp. 921–924). IEEE.

[6]. Gokhale AA (2005). Introduction to

Telecommunications (2 ed.). New York,

United States of America: Thomson

Delmer Learning.

[7]. Haykin S (2001). Communication

Systems (4 ed.). New York, USA: John

Wiley & Sons, Inc.

[8]. Hong J, Li VOK (2009). Impact of

Information on Network Performance –

An Information- Theoretic Perspective.

IEEE Glob. Telecomm.Conf. Publ. pp.1-6.

[9]. Keiser G (2002). Local Area Networks.

New York, United States of America:

McGraw-Hill Companies.

[10]. Koendjbiharie S, Koppius O, Vervest P,

van Heck E (2010). Network transparency

and the performance of dynamic business

networks.2010 4th IEEE International

Conference on Digital Ecosystems and

Technologies (DEST).pp.197-202.

[11]. Kouvastos DD (2011). Network

Performance Engineering: A Handbook on

Convergent Multi-service Networks and

Next Genereation Internet. German:

Springer-Verlag Berlin Heidelberg.

[12]. Lathi, B. (1998). Modern Digital and

Analog Communication Systems. New

York: Oxford University Press Inc.

[13]. Lawniczak AT, Tang X (2006). Packet

Switching Network Performance

Indicators as Function of Network

Topology and Routing Algorithms.IEEE

Conference (CCECE '06)

Publication.pp.1008-1011.

[14]. Milliken WC (2005). Patent No. 6978223.

USA.

[15]. Nassar DJ (2000). Network Performance

Baselining (1 ed.). USA: MTP.

[16]. Park KI (2005). QoS in Packet Networks.

USA: Springer.

[17]. Prasad,\ RS, Murray M, Dovrolis C,

Claffy K (2003). Bandwidth estimation:

metrics, measurement and tools.

Networking Journal, IEEE.

[18]. Seshan S, Stemm M, Katz RH (1997).

SPAND: Shared Passive Network

Performance Discovery. USENIX

Symposium on Internet Technologies and

Systems. California: USENIX.

[19]. Sheldon, F.T., Weber, J.M., Yoo, S.M.,

Pan, W.D., 2012. Theinsecurity of

wireless networks.Secur. Privacy IEEE 10

(4), 54–61

[20]. Soldani D, Li M, Cuny R (2006). QoS and

QoE Management in UMTS Cellular

Systems. West Sussex, UK: John Wiley &

Sons.

[21]. Spohn DL (2000). Data Network Design.

New York, United States of America:

McGraw-Hill Companies Inc.

[22]. (22) Stallings W (1996July9). Knowing

wiring basics can boost local net

performance. Network World , P. 29.

[23].) Stanford Linear Accelerator Center

(SLAC). (n.d.).Network Monitoring

Tools.Retrieved August 29, 2013, from

http://www.slac.stanford.edu/xorg/nmtf/n

mtf-tools.html.

[24]. Walrand J, Varaiya P (2000). High-

Performance Communication Networks.

USA: Academic Press.

ESTIMATORS ACCURACY

Estimator 5 99.68

Estimator 50 99.36

Estimator 100 98.8

Estimator 500 97.67

International Journal of Advances in Engineering and Management (IJAEM)

Volume 7, Issue 01 Jan. 2025, pp: 199-210 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0701199210 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 210

[25]. Ogunrinde, S. I., 2004. Network

Programming and Design, Heinemann

Educational Press, pp. 1-12

[26]. Menkiti, A. I., 2005. Logic Circuits,

Devices and Applications, EFTIMO Nig

Press, Calabar, pp 82-90

[27]. Yucalar, F. & Erdogan, S. Z., July 2009.

A Questionnaire Based Method for CMMI

Level 2 Maturity Assessment. Journal of

aeronautics and Space Technologies, pp.

39-46

[28]. Vincent A. Akpan, Reginald O. A.

Osakwe and AmakuAmaku, Efficient

Networking Of Tini For Real-Time

Weather Data Logging& Deployment

Over Ethernet And Serialcommunication

Links. International Journal of

Communications, Network and System

Sciences (IJCNS), September 2013, P. O.

BOX 54821, Irvine CA 92619-4821,

USA. (PUBLISHED)

[29]. AmakuAmaku, Raphael E.Watti, John

Joshua, Optic Fiber As A Reliable

Medium For Metropolitan Area

Networking (Man) Connectivity,

International Journal of Engineering and

Technology (IJET) Volume 4 No. 7, July,

2014, ISSN: 2049-3444 © 2014 –IJET

Publications UK.

[30]. AmakuAmaku, RaphealWatti, Igbinosa

G., Bandwidth As A Determinant Factor

For Effective Internet Connectivity In

Educational Research Purpose In Higher

Institution Of Learning. International

Journal of Engineering and Technology

(IJET) Volume 6 No. 4, April , 2016,

ISSN: 2049-3444 © 2016 –IJET

Publications UK.

[31]. M.I. Jordan, T.M. Mitchell, Machine

learning: Trends, perspectives, and

prospects, Science 349 (2015) 255260.

https://doi.org/10.1126/science.aaa8415.

[32]. M.-A. Zller and M. F. Huber, Benchmark

and Survey of Automated Machine

Learning Frameworks, arXiv preprint

arXiv:1904.12054, (2019).

https://arxiv.org/abs/1904.12054.

[33]. R. E. Shawi, M. Maher, S. Sakr,

Automated machine learning: State-of-

the-art and open challenges, arXiv preprint

arXiv:1906.02287, (2019).

http://arxiv.org/abs/1906.02287.

[34]. M. Kuhn and K. Johnson, Applied

Predictive Modeling, Springer (2013)

ISBN: 9781461468493.

[35]. G.I. Diaz, A. Fokoue-Nkoutche, G.

Nannicini, H. Samulowitz, An effective

algorithm for hyperparameter optimization

of neural networks, IBM J. Res. Dev. 61

(2017) 120.

https://doi.org/10.1147/JRD.2017.270957

8.

[36]. F. Hutter, L. Kotthoff, and J. Vanschoren,

Eds., Automatic Machine Learning:

Methods, Systems, Challenges, Springer

(2019) ISBN 9783030053185.

[37]. N. Decastro-Garca, . L. MuozCastaeda, D.

EscuderoGarca, and M. V. Carriegos,

Effect of the Sampling of a Dataset in the

Hyperparameter Optimization Phase over

the Efficiency of a Machine Learning

Algorithm, Complexity 2019 (2019).

https://doi.org/10.1155/2019/6278908.

[38]. S. Abreu, Automated Architecture Design

for Deep Neural Networks, arXiv preprint

arXiv:1908.10714, (2019).

http://arxiv.org/abs/1908.10714.

[39]. O. S. Steinholtz, A Comparative Study of

Black-box Optimization Algorithms for

Tuning of Hyper-parameters in Deep

Neural Networks, M.S. thesis, Dept. Elect.

Eng., Lule Univ. Technol., (2018).

[40]. G. Luo, A review of automatic selection

methods for machine learning algorithms

and hyper-parameter values, Netw.

Model.Anal. Heal, Informatics

Bioinforma. 5 (2016) 116.

https://doi.org/10.1007/s13721-016-0125-

6.

[41]. D. Maclaurin, D. Duvenaud, R.P. Adams,

Gradient-based Hyper-parameter

Optimization through Reversible

Learning, arXiv preprint

arXiv:1502.03492, (2015).

http://arxiv.org/abs/1502.03492.

[42]. J. Bergstra, R. Bardenet, Y. Bengio, and

B. K ́egl, Algorithms for hyper-parameter

optimization, Proc. Adv. Neural Inf.

Process. Syst., (2019)25462554.

[43]. B. James and B. Yoshua, Random Search

for Hyper-Parameter Optimization, J.

Mach. Learn. Res. 13 (1) (2019) 281305.

[44]. N. Landwehr, M. Hall, and E. Frank,

―Logistic model trees,‖ Mach. Learn.,

vol. 59, no. 12, pp. 161-205, 2015.

[45]. Breiman Leo (2001). "Random Forests".

Machine Learning 45 (1): 5–32.

[46]. Liaw, Andy (16 October 2012).

“Documentation for R package random

forest”.Retrieved 15 March 2013.

https://doi.org/10.1126/science.aaa8415
https://arxiv.org/abs/1904.12054
http://arxiv.org/abs/1906.02287
https://doi.org/10.1147/JRD.2017.2709578
https://doi.org/10.1147/JRD.2017.2709578
https://doi.org/10.1155/2019/6278908
http://arxiv.org/abs/1908.10714
https://doi.org/10.1007/s13721-016-0125-6
https://doi.org/10.1007/s13721-016-0125-6
http://arxiv.org/abs/1502.03492

