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ABSTRACT 

In recent times, researchers have been proposing 

different Intrusion Detection methods to deal with 

the increasing number and complexity of threats as 

technology keeps emerging. In this context, 

Random Forest models have been providing a 

notable performance on her predictive capacity to 

applications in the realm of  behavioural-based 

Intrusion Detection Systems and other related 

fields of specialization which includes medicines, 

Banking, commerce, etc in terms high magnitude 

forecasting and optimal predictions .  In this work, 

in-depth evaluation analysis of the Random Forest 

tuning were carried out with respect to 

classification, feature selection, and proximity 

metrics. This empirical research will provide an 

inclusive review of the general basic concepts 

related to Intrusion Detection Systems, which 

includes taxonomies, data collection, modeling and 

evaluation metrics. Furthermore, the manual 

hyperparameter tuning technique was used for this 

research work and a desirable experimental output 

was achieved as showed in this work. 

Key Words: Random Forest, Machine Learning, 

Optimization, Hyperparamenters, Classification, 

Evaluation Metrics. 

 

I. INTRODUCTION 
MACHINE LEARNING 

Machine learning (ML) algorithms have 

been widely used in many applications domains, 

including advertising, recommendation systems, 

computervision, natural language processing, and 

user behavior analytics (Jordan & Michell,2015). 

This is because they are generic and demonstrate 

high performance in data analytics problems. 

Different ML algorithms are suitable for different 

types of problems or datasets (Ziler& Huber,2019). 

In general, building an effective machine learning 

model is a complex and time-consuming process 

that involves determining the appropriate algorithm 

and obtaining an optimal model architecture by 

tuning its hyper-parameters (HPs) (Shawi ,et 

al,2019). Two types of parameters exist in machine 

learning models: one that can be initialized and 

updated through the data learning process (e.g., the 

weights of neurons in neural networks), named 

model parameters; while the other, named hyper-

parameters, cannot be directly estimated from data 

learning and must be set before training a ML 

model because they define the architecture of a ML 

model (Kuhn & John, 2013). Hyper-parameters are 

the parameters that are used to either configure a 

ML model (e.g., the penalty parameter C in a 

support vector machine, and the learning rate to 

train a neural network) or to specify the algorithm 

used to minimize the loss function (e.g., the 

activation function and optimizer types in a neural 

network, and the kernel type in a support vector 

machine) (Diaz et al, 2017). To build an optimal 

ML model, a range of possibilities must be 

explored. The process of designing the ideal model 

architecture with an optimal hyper-parameter 

configuration is named hyper-parameter tuning. 

Tuning hyper-parameters is considered a key 

component of building an effective ML model, 

especially for tree-based ML models and deep 

neural networks, which have many hyper-



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 7, Issue 01 Jan. 2025,  pp: 199-210  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0701199210          |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 200 

parameters (Hutter et al,2019). Hyper-parameter 

tuning process is different among different ML 

algorithms due to their different types of hyper- 

parameters, including categorical, discrete, and 

continuous hyper-parameters (Decastro-Garca et 

al,2019). Manual testing is a traditional way to tune 

hyper-parameters and is still prevalent in graduate 

student research, although it requires a deep 

understanding of the used ML algorithms and their 

hyper-parameter value settings (Abreu, 2019). 

However, manual tuning is ineffective for many 

problems due to certain factors, including a large 

number of hyper-parameters, complex models, time 

consuming model evaluations, and non-linear 

hyper-parameter interactions. These factors have 

inspired increased research in techniques for 

automatic optimization of hyper-parameters; so-

called hyper-parameter optimization. (HPO) 

(Steinholtz,2018). The main aim of HPO is to 

automate hyper-parameter tuning process and make 

it possible for users to apply machine learning 

models to practical problems effectively (Shawi ,et 

al,2019). The optimal model architecture of a ML 

model is expected to be obtained after a HPO 

process. Some important reasons for applying HPO 

techniques to ML models are as follows (Hutter et 

al,2019): 

1. It reduces the human effort required, since many 

ML developers spend considerable time tuning the 

hyper-parameters, especially for large datasets or 

complex ML algorithms with a large number of 

hyper- 

parameters. 

2. It improves the performance of ML models. 

Many ML hyper-parameters have different 

optimums to achieve best performance in different 

datasets or problems. 

3. It makes the models and research more 

reproducible. Only when the same level of hyper-

parameter tuning process is implemented can 

different ML algorithms be compared fairly; hence, 

using a same HPO method on different ML 

algorithms also helps to determine the most 

suitable ML model for a specific problem. 

It is crucial to select an appropriate optimization 

technique to detect optimal hyper-parameters. 

Traditional optimization techniques may be 

unsuitable for HPO problems, since many HPO 

problems are non-convex or non-differentiable 

optimization problems, and may result in a local 

instead of a global optimum (Lou, 2016). Gradient 

descent-based methods are a common type of 

traditional optimization algorithm that can be used 

to tune continuous hyper-parameters by calculating 

their gradients (Maclaurin et al, 2015). For 

example, the learning rate in a neural network can 

be optimized by a gradient-based method. 

Compared with traditional optimization methods 

like gradient descent, many other optimization 

techniques are more suitable for HPO problems, 

including decision-theoretic approaches, Bayesian 

optimization models, multifidelity optimization 

techniques, and metaheuristics algorithms 

(Decastro-Garca et al,2019). Apart from detecting 

continuous hyper-parameters, many of these 

algorithms also have the capacity to effectively 

identify discrete, categorical, and conditional 

hyper-parameters. Decision-theoretic methods are 

based on the concept of defining a hyper-parameter 

search space and then detecting the hyper-

parameter combinations in the search space, 

ultimately selecting the best-performing hyper-

parameter combination. 

 

Bergstra et al, 2019 concluded that Grid 

search (GS)  is a decision-theoretic approach that 

involves exhaustively searching for a fixed domain 

of hyper-parameter values. . James & Yoshua,2019 

also discussed   Random search (RS) as another 

decision-theoretic method that randomly selects 

hyper-parameter combinations in the search space, 

given limited execution time and resources. In GS 

and RS, each hyper-parameter configuration is 

treated independently. 

 

1.2 DECISION TREE 

Decision Tree is a graphical representation 

of all possible solutions to a decision, decision tree 

is based on some conditions and it can be easily be 

explained. It represents a function that takes as 

Input a vector of attribute values and returns a 

“decision” – a single output value. 

Decision tree is a flow-chart-like tree 

structure that uses a branching method to illustrate 

every possible outcome of a decision. Each node 

within the tree represents a test on a specific 

variable- and each branch is the outcome of that 

test. It is also a simple flowchart that selects labels 

for input values. 

This flowchart consists of decision nodes, 

which check feature values, and leaf nodes, which 

assign labels. To choose the label for an input 

value, we begin at the flowchart’s initial decision 

nodes, known as its roots node. This node contains 

a condition that checks one of the input value’s 

features, and selects a branch based on that features 

value. Following the branch that describes our 

input value, we arrive at a new decision node, with 

a new condition on the input value’s features. We 

continue following the branch selected by each 
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node’s condition, until we arrive at a leaf node 

which provides a label for the input value. 

Decision tree algorithm falls under the 

category of supervise learning. They can be used to 

solve both regression and classification problems. 

A decision tree reaches its decision by performing 

a sequence of tests.  

For Example 

 
Figure 1.1 Decision Tree Learning Algorithm 

 

ID3  ( Iterative Dichotomies 3) 

 ID3 is on of the most common decision tree 

algorithm. 

 Dichotomies means dividing into two 

completely opposite things. 

 Algorithm iterative divides attribute into two 

groups are the most dominant attribute and 

others to construct a tree. 

 Then, it calculate the Entropy and information 

gain of each attribute. In this way, the most 

dominant attribute can be founded. 

 After then, the most dominant one is put on the 

tree as decision node. For  

 Entropy and gain scores would be calculated 

again among the other attributes. 

 Procedure continues until reaching a decision 

for that branch. 

 

Formulas: 

Entropy(s) = Є – P(I) . LogP2 (I) 

…………………….. (1) 

Gain (S,A) = Entropy(s) – Є [P(S/A) . Entropy 

(S/A)] -------------------------- (2) 

A decision tree is also a simple flowchart 

that selects labels for input values. This flowchart 

consists of decision nodes, which check feature 

values, and leaf nodes, which assign labels. To 

choose the label for an input value, we begin at the 

flowchart’s initial decision nodes, known as its 

roots node. This node contains a condition that 

checks one of the input value’s features, and selects 

a branch based on that features value. Following 

the branch that describes our input value, we arrive 

at a new decision node, with a new condition on the 

input value’s features. We continue following the 

branch selected by each node’s condition, until we 

arrive at a leaf node which provides a label for the 

input value. 

Once we have a decision tree, it is 

straightforward to use it to assign labels to new 

input values. What’s less straightforward is how we 

can build a decision tree that models a given 

training set. But before we look at the learning 

algorithm for building decision tress, we’ll consider 

a simpler task: picking the best “decision stump” 

for a corpus.  

A decision stump is a decision tree with a 

single node that decides how to classify inputs 

based on a single feature. It contains one leaf for 

each possible feature value, specifying the class 

label that should be assigned to inputs whose 

features have that value. In order to build a 

decision stump, we must first decide which features 

should be used. The simplest method is to just 

build a decision stump for each possible feature, 

and see which one achieves the highest accuracy on 

the training data, although there are other 

alternatives that we will discuss later. Once we’ve 

picked a feature, we can build the decision stump 

by assigning a label to each based on the most 

frequently for the selected examples in the training 

set (i.e. the examples where the selected feature has 

that value). 

Given the algorithm for choosing decision 

stumps, the algorithm for growing larger decision 

tress is straightforward. We begin by selecting the 

overall best decision stump for the classification 

task. We then check the accuracy of each of the 

leaves on the training set. Leaves that do not 

achieve sufficient accuracy are then replaced by 

new decision stumps, trained on the subset of the 

training corpus that is selected by the path to the 

leaf.  

 

1.3 Entropy and information Gain 

There are several methods for identifying 

the most informative feature for a decision stump. 
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One popular alternative called information 

gain,measures how much more organized the input 

values become when we divide them up using a 

given feature.  How disorganized the original set of 

input values are, we calculate entropy of their 

labels, which will be high if the input values have 

highly varied labels, and how if many input values 

all have the same label. In particular, entropy is 

defined as the sum of the probability of each label 

times the log probability of that same label: 

  

H = Ƹl ϵ labels P (l) * log2P (l).    

……………………………………. (3) 

 

For example, Figure above shows how the 

entropy of labels in the weather prediction task 

depends on the ratio of sunny to outcast to raining 

attributes names. Note that if 

 Most input values have the same label 

(e.g., if P(sunny) is near 0 or near 1), then entropy 

is low. In particular, labels that have low frequency 

do not contribute much to the entropy (since P(l) is 

small), and labels with high frequency also do not 

contribute much to the entropy (since log2P(l) is 

small). On the other hand, if the input values have a 

wide variety of labels, then there are many labels 

with a “medium” frequency, where neither P(l) nor 

log2P(l) is small, so the entropy is high.  

Once we have calculated the entropy of 

the label of the original set of input values, we can 

determine how much more organized the labels 

become once we apply the decision stump. To do 

so, we calculate the entropy for each of the decision 

stump’s leaves, and take the average of those leaf 

entropy values (weighed by the number of samples 

in each leaf). The information gain is then equal to 

the original entropy minus this new reduced 

entropy. The higher the information gain, the better 

job the decision stump does of dividing the input 

values into coherent groups, so we can build 

decision trees by selecting the decision stumps with 

the highest information gain.   

Another consideration for decision tree is 

efficiency. The simple algorithm for selecting 

decision stumps described earlier must construct a 

weather decision stump for every possible feature, 

and this process must be repeated for every node in 

the constructed decision tree. A number of 

algorithms have been developed to cut down on the 

training time by storing and reusing information 

about previously evaluated examples.  

However, decision trees also has a few 

disadvantages. One problem is that, since each 

branch in the decision tree splits the training data, 

the amount of training data available to train nodes 

lower in the tree can become quite small. As a 

result, these lower decision nodes may overfit the 

training set, learning patterns that reflect 

idiosyncrasies of the training set rather than 

linguistically significant patterns in the underlying 

problem. One solution to this problem is to stop 

diving nodes once the amount of training data 

becomes too small. Another solution is to grow a 

full decision tree, but then to prune decision nodes 

that do not improve performance on a dev-test. 

A second problem with decision trees is 

that they force features to be checked in a specific 

order, even when features may act relatively 

independently of one another. For example, when 

classifying documents into topics (such as a sports, 

automotive, or murder mystery), features such as 

has word (football) are highly indicating of a 

specific label, regardless of what the other feature 

value are. Since there is limited space near the top 

of the decision tree, most of these features will 

need to be repeated on many different branches in 

the tree. And since the number of branches 

increases exponentially as we go down the tree, the 

amount of repetition can be very large. 

A related problem is the decision trees are 

not good at making use of features that re weak 

predictors of the correct label. Since these features 

make relatively small incremental improvements, 

they tend to occur very low in the decision tree. But 

by the time the decision tree learner has descended 

far enough to use these features, there is not 

enough training data left to reliable determine what 

effect they should have. If we could instead look at 

the effect of these features across the entire training 

set, then we might be able to make some 

conclusions about how they should affect the 

choice of label. 

The face that decision trees require that 

features be checked in a specific order limits their 

ability to exploit features that are relatively 

independent of one another.  

Computer security is the ability to protect 

a computer system and its resources in reference to 

Confidentiality, Integrity and Availability (Urasva, 

2015). The main goal of any Intrusion Detection 

System is to detect attacks. Random forests 

(Breiman, 2001) are considered as one of the most 

successful general-purpose algorithms in modern-

times (Biau and Scornet, 2016). They can be 

applied to a wide range of learning tasks, but most 

prominently to classification and regression. A 

random forest is an ensemble of trees, where the 

construction of each tree is random. After building 

an ensemble of trees, the random forest makes 

predictions by averaging the predictions of 
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individual trees. Random forests often make 

accurate and robust predictions, even for very high-

dimensional problems (Biau, 2012), in a variety of 

applications (Criminisi and Shotton, 2013; Belgiu 

and Dr˘agut¸, 2016; D´ıaz-Uriarte and Alvarez de 

Andr´es, 2006). Recent theoretical works have 

established a series of consistency results of 

different variants of random forests, when the 

forests’ parameters are tuned in certain ways 

(Scornet, 2016;Scornet et al., 2015; Biau, 2012; 

Biau et al., 2008).Random forest has nearly the 

same hyperparameters as a decision tree or a 

bagging classifier. Furthermore, knowing the 

attacks and how they are classified is important to 

enable better comprehension and critical analysis. 

In Table 1 represent the first dimension of the 

attack taxonomy proposed by Hansman and Hunt 

(2005), which is used in other works (e.g., Bhuyan 

et al. (2014), Ghorbani et al. (2010), and Sperotto 

et al. (2010)) and provides a good understanding 

about attacks on networks. 

In the literature, there are a variety of 

attack taxonomies devoted to specific major attack 

types or attacked systems or protocols, such as 

DDoS attacks (Mirkovic and Reiher 2004), cloud 

systems (Juliadotter and Choo 2015; Mishra et al. 

2017), web applications (Alvarez and Petrovic 

2003; Watson 2007), Supervisory Control and Data 

Acquisition (SCADA) systems (Zhu et al. 2011), 

protocol DNP3 that is usually used in SCADA 

systems (East et al. 2009), P2P communication 

(Yue et al. 2009), embedded systems (Papp et al. 

2015), botnets (Dagon et al. 2007), and the Internet 

infrastructure, for example, attacks on the Border 

Gateway Protocol (BGP) used for routing in the 

Internet (Chakrabarti and Manimaran 2002). 

Taxonomies also can be oriented to attack response 

(Souissi and Serhrouchni 2014; Wu et al. 2011), 

target systems, causes, impact, time, among other 

characteristics. In 2008, Igure and Williams had 

explored on classical attacks on  taxonomies.   

 

RESEARCH DESIGN   
 This research work deals with an 

optimization of behavioral based random forest 

algorithm as a machine learning tool in intrusion 

detection systems. The research methodology will 

effectively discuss possible directions which this 

research work will take in order to achieve its 

objectives. The detailed information on the process 

involved in data acquisition will be presented also. 

Hyperparameters are important for machine 

learning algorithms since they directly control the 

behaviors of  training  algorithms and have a 

significant effect on the performance of machine 

learning models. Several techniques have been 

developed and successfully applied for certain 

application domains. This research work has 

proposed a technique which will improve a 

dataset's data content by translating it into a brand 

new feature subspace of lower dimensionality than 

the original. Normally machine learning algorithm 

transforms a problem that needs to be solved into 

an optimization problem and uses different 

optimization methods to solve the problem. The 

optimization function is composed of multiple 

hyperparameters that are set prior to the learning 

process and affect algorithm performance of the 

model. 
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Fig 3.2  Program Flowchart 

 

 

Fig 3.3  dataset in csv(comer separated values) format file 

 

The Info on dataset used is given below: 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 125973 entries, 0 to 125972 

Data columns (total 42 columns): 

 #   Column                         Non-Null Count   Dtype 

---  ------                         --------------   -----   

 0   'duration'                        125973 non-null  int64 

 1   'protocol_type'               125973 non-null  object 

 2   'service'                          125973 non-null  object 

 3   'flag'                               125973 non-null  object 

 4   'src_bytes'                       125973 non-null  int64 

 5   'dst_bytes'                       125973 non-null  int64 

 6   'land'                               125973 non-null  int64 

 7   'wrong_fragment'            125973 non-null  int64 

 8   'urgent'                            125973 non-null  int64 

 9   'hot'                                 125973 non-null  int64 

10  'num_failed_logins'         125973 non-null  int64   
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11  'logged_in'                                  125973 non-null  int64   

12  'num_compromised'                   125973 non-null  int64   

13  'root_shell'                                  125973 non-null  int64   

14  'su_attempted'                             125973 non-null  int64   

15  'num_root'                                  125973 non-null  int64   

16  'num_file_creations'                   125973 non-null  int64   

17  'num_shells'                                125973 non-null  int64   

18  'num_access_files'                      125973 non-null  int64   

19  'num_outbound_cmds'               125973 non-null  int64   

20  'is_host_login'                            125973 non-null  int64   

21  'is_guest_login'                           125973 non-null  int64   

22  'count'                                        125973 non-null  int64   

23  'srv_count'                                 125973 non-null  int64   

24  'serror_rate'                                125973 non-null  float64 

25  'srv_serror_rate'                         125973 non-null  float64 

26  'rerror_rate'                                125973 non-null  float64 

27  'srv_rerror_rate'                         125973 non-null  float64 

28  'same_srv_rate'                          125973 non-null  float64 

29  'diff_srv_rate'                            125973 non-null  float64 

30  'srv_diff_host_rate'                    125973 non-null  float64 

31  'dst_host_count'                         125973 non-null  int64   

32  'dst_host_srv_count'                  125973 non-null  int64   

33  'dst_host_same_srv_rate'           125973 non-null  float64 

34  'dst_host_diff_srv_rate'             125973 non-null  float64 

35  'dst_host_same_src_port_rate'   125973 non-null  float64 

36  'dst_host_srv_diff_host_rate'     125973 non-null  float64 

37  'dst_host_serror_rate'                 125973 non-null  float64 

38  'dst_host_srv_serror_rate'          125973 non-null  float64 

39  'dst_host_rerror_rate'                 125973 non-null  float64 

40  'dst_host_srv_rerror_rate'          125973 non-null  float64 

41  'class'                                         125973 non-null  object  

dtypes: float64(15), int64(23), object(4) 

memory usage: 40.4+ MB 

 

Following the collection of data obtained, 

the data collected was checked for the presence of 

error in data entry including misspellings and 

missing data. Following this process, there was no 

error in misspelling of any data in the record.  

 

HANDLING MISSING VALUE (This is to check which feature contains missing values 

print(df.isnull().sum()) 

'duration'                        0 

'protocol_type'               0 

'service'                          0 

'flag'                               0 

'src_bytes'                      0 

'dst_bytes'                      0 

'land'                              0 

'wrong_fragment'         0 

'urgent'                          0 

'hot'                                0 

'num_failed_logins'        0 

'logged_in'                      0 

'num_compromised'       0 

'root_shell'                     0 

'su_attempted'                0 
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'num_root'                      0 

'num_file_creations'       0 

'num_shells'                    0 

'num_access_files'          0 

'num_outbound_cmds'   0 

'is_host_login'                0 

'is_guest_login'              0 

'count'                            0 

'srv_count'                     0 

'serror_rate'                  0 

'srv_serror_rate'           0 

'rerror_rate'                  0 

'srv_rerror_rate'           0 

'same_srv_rate'                  0 

'diff_srv_rate'                     0 

'srv_diff_host_rate'            0 

'dst_host_count'                  0 

'dst_host_srv_count'           0 

'dst_host_same_srv_rate'   0 

'dst_host_diff_srv_rate'                0 

'dst_host_same_src_port_rate'    0 

'dst_host_srv_diff_host_rate'       0 

'dst_host_serror_rate'                  0 

'dst_host_srv_serror_rate'           0 

'dst_host_rerror_rate'                 0 

'dst_host_srv_rerror_rate'          0 

'class'                                             0 

dtype: int64 

 

7  Evaluation Metrics  

The evaluation metrics generated from this research 

work is given below; 

Parameter distribution of random forest used for 

the randomized search 

# Number of trees to use for building the random 

forest 

n_estimators = [int(x) for x in np.linspace(start = 

10, stop = 80, num = 10)] 

# Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [2,4] 

# Minimum number of samples required to split a 

node 

min_samples_split = [2, 5] 

# Minimum number of samples required at each 

leaf node 

min_samples_leaf = [1, 2] 

criterion =['gini', 'entropy'] 

# Method of selecting samples for training each 

tree 

bootstrap = [True, False] 

 

Parameter distribution code 

# Create the param grid 

param_grid = {'n_estimators': n_estimators, 

               'max_features': max_features, 

               'max_depth': max_depth, 

               'min_samples_split': min_samples_split, 

               'min_samples_leaf': min_samples_leaf, 

               'criterion' :criterion, 

               'bootstrap': bootstrap} 

print(param_grid)x 

 

OPTIMISED HYPERPARAMETER TUNNING 

OF RANDOM FOREST CLASSIFIER RESULT 

Cross Validation at 10 fold 

fitting 10 folds for each of 10 candidates, totalling 

100 fits 

 

RandomizedSearchCV(cv=10, 

estimator=RandomForestClassifier(), n_jobs=4, 

param_distributions={'bootstrap': [True, False], 

                                        'criterion': ['gini', 

'entropy'], 

                                        'max_depth': [2, 4], 

                                        'max_features': ['auto', 

'sqrt'], 

                                        'min_samples_leaf': [1, 2], 

                                        'min_samples_split': [2, 

5], 
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                                        'n_estimators': [10, 17, 25, 

33, 41,  48, 

                                                         56, 64, 72, 

80]}, 

verbose=2) 

 

Best Parameter Result Generated From the 

Parameter Range Provided 

rf_RandomGrid.best_params_ 

 

{'n_estimators': 72, 

 'min_samples_split': 5, 

 'min_samples_leaf': 2, 

 'max_features': 'sqrt', 

 'max_depth': 4, 

 'criterion': 'entropy', 

 'bootstrap': True} 

 

Optimized Hyperparameter Tuning Of Random 

Forest Classifier Result 

Train Accuracy - : 97.833% 

 

COMPARATIVE ANALYSIS RESULT WITH 

OTHER RELATED MACHINE LEARNING 

ALGORITHM 

The optimized value (accuracy) obtained from this 

research work is later compared with other 

algorithm. The results is shown below 

Naive Bayes Algorithm Result 

fromsklearn.model_selectionimporttrain_test_split 

X_train,X_test,y_train,y_test=train_test_split(X,y,t

est_size=0.2,random_state=9) #Split the dataset 

fromsklearn.naive_bayesimportGaussianNB 

nv=GaussianNB() # create a classifier 

nv.fit(X_train,y_train) # fitting the data 

fromsklearn.metricsimportaccuracy_score 

y_pred=nv.predict(X_test) # store the prediction 

data 

#accuracy_score(y_test,y_pred) # calculate the 

accuracy 

print("Accuracy of Naive Bayes Algorithm is : 

{}".format(accuracy_score(y_test,y_pred)*100)) 

Accuracy of Naive Bayes Algorithm is : 

52.92716808890653 

 

Logistic Regression 

importmatplotlib.pyplotasplt 

importnumpyas np 

fromsklearn.linear_modelimportLogisticRegressio

n 

fromsklearn.metricsimportclassification_report, 

confusion_matrix 

model=LogisticRegression(solver='liblinear', 

random_state=0) 

model.fit(X, y) 

LogisticRegression(C=1.0, class_weight=None, 

dual=False, fit_intercept=True, 

intercept_scaling=1, l1_ratio=None, max_iter=100, 

multi_class='warn', n_jobs=None, penalty='l2', 

random_state=0, solver='liblinear', tol=0.0001, 

verbose=0, 

warm_start=False) 

model=LogisticRegression(solver='liblinear', 

random_state=0).fit(X, y) 

model.predict(X) 

model.score(X, y)*100 

Accuracy: 88.57215435053544 

 

RANDOM FOREST CLASSIFIER 

fromsklearn.ensembleimportRandomForestClassif

ier 

fromsklearn.metricsimportconfusion_matrix 

fromsklearn.metricsimportclassification_report 

fromsklearn.metricsimportaccuracy_score 

rf=RandomForestClassifier(n_estimators=50,min_s

amples_leaf=0.2,random_state=42) 

rf.fit(X_train,y_train) 

pred=rf.predict(X_test) 

print("Accuracy of Random Forest model is : 

{}".format(accuracy_score(y_test,pred)*100)) 

Accuracy of Random Forest model is : 91.82 

 

SUPPORT VECTOR MACHINE 

fromsklearn.model_selectionimporttrain_test_split 

X_train, X_test, y_train, y_test=train_test_split(X, 

y, test_size=0.2) 

fromsklearn.svmimport SVC 

svclassifier= SVC(kernel='rbf', degree=8) 

svclassifier.fit(X_train, y_train) 

y_pred=svclassifier.predict(X_test) 

fromsklearn.metricsimportclassification_report, 

confusion_matrix 

fromsklearn.metricsimportaccuracy_score 

print("Accuracy of the Support Vector Machine 

model is : {}".format(accuracy_score(y_test,y_pred 

)*100)) 

Accuracy of the Support Vector Machine model is : 

53.70 
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S/N ESTIMATORS MIN. SAMPLE LEAF RANDOM STATE ACCURACY (%) 

1 100 80 50 98.80 

2 200 150 100 98.55 

3 200 250 150 98.32 

4 500 250 200 98.32 

5 500 300 250 97.67 

6 50 30 32 99.36 

7 50 45 42 99.24 

8 50 25 32 99.37 

9 30 18 21 99.48 

10 20 13 25 99.51 

11 10 8 15 99.57 

12 5 3 6 99.63 

13 5 2 3 99.68 

Table 1. 1. Experimental summary on manual hyperparameter  tuning. 

 

II. DISCUSSION ON TABLE 1 
This section of experiment was carried out 

with selected numbers of hyperparameter values 

which included the numbers of  estimators, 

minimum sample leaf and random state, results of 

the experiments clearly stated below the table. 

When the value of the estimator was set at 500, 

Min. Sample leaf  300  and Random state 250, it 

was observed the performance in outcome with 

respect to accuracy declined, which implies that the 

greater the numbers of trees on the nodes, the less 

predictive the accuracy of the outcome. It was also 

observed that when the estimatorsvalue was set on 

5, Min. Sample leaf 2 and Random state at 3, the 

efficiency on the outcome was greatly achieved. 

This is just a phase testing of my model to 

check for correctness on predictive purpose, and 

this is also a manual phase on my software module. 

 

 

 
Fig 4.3 Graph depicting accuracy level of the manual hyperparameter tuning. 
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