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ABSTRACT: Thermal infrared imaging systems 

are increasingly important in autonomous driving, 

medical diagnostics, and solar panel inspection 

applications. However, the effectiveness of thermal 

images is often limited by low contrast, indistinct 

details, uneven illumination, and various artifacts 

that hinder human interpretation and automated 

analysis. Conventional and deep learning-based 

enhancement methods offer partial solutions but 

frequently struggle to generalize across diverse 

conditions or produce consistently high-quality 

results.  

This paper proposes a unified thermal image 

enhancement pipeline that combines 

decomposition-based image processing, robust 

illumination balancing, and analytically designed 

pseudo-coloring schemes to enhance visual clarity, 

preserve structural details, and deliver interpretable 

colorized outputs suited for downstream tasks. Our 

methodology consists of a three-stage pipeline: (1) 

decomposition to separate fine details from the 

base structure, (2) adaptive contrast enhancement 

using the specialized module, and (3) pseudo-

coloring that maps thermal intensities to 

perceptually meaningful color spaces.  The pipeline 

enhances visual clarity, preserves structural details, 

and delivers interpretable colorized outputs suited 

for downstream tasks. Extensive experimentation 

on multiple real-world datasets, including 

autonomous vehicles, demonstrates that our 

method significantly improves visual quality and 

object detection performance. Furthermore, 

evaluation of the proposed enhancement and 

coloring techniques using the YOLOv7 object 

detector shows that our approach yields up to 2.6% 

higher mAP0.5 compared to models trained on 

original thermal images, highlighting its 

effectiveness in improving object detection 

accuracy. 

 

KEYWORDS:Image decomposition, Object 

detection, Pseudo-colorization, Thermal image 

enhancement. 

 

I. INTRODUCTION 
RGB camera-based computer vision 

systems often face significant limitations due to 

varying lighting conditions and low-light 

environments. Thermal imaging technology 

provides a robust alternative, effectively 

overcoming these drawbacks inherent in standard 

color imagery. Thermal imaging systems perform 

well under diverse environmental conditions, 

capturing temperature information through mid- 

and long-wavelength infrared bands. This 

capability is particularly valuable in applications 

where visual data is unreliable, such as security 

monitoring [1], autonomous vehicle navigation [2], 

military surveillance [3], medical diagnostics [4], 

and UAV-based solar panel inspection systems.  

For instance, thermal imaging enhances 

security systems by reliably detecting intruders 

under low-visibility conditions. Autonomous 

vehicles utilize thermal imaging to identify 

pedestrians, vehicles, and essential traffic 

infrastructure, significantly improving road safety. 

In medical diagnostics, thermal imaging supports 

non-invasive procedures such as breast cancer 

screening, while UAV-assisted solar panel 

inspections leverage thermal imaging to identify 

panel defects. However, thermal imaging often 

suffers from issues like uneven brightness, 

including excessively bright or overly dim regions, 

which limit the clarity of visualized targets and 

hinder broader infrared application deployment. 
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Various thermal image enhancement 

methods have been developed to address these 

limitations and improve the visibility, clarity, and 

overall quality of thermal images for automated 

processing systems. Effective thermal enhancement 

enhances decision-making and operational safety 

across numerous domains. Several image 

improvement and enhancementstrategies have 

emerged in recent years to address the persistent 

challenges of low-quality thermal imagery. 

Broadly, these techniques can be divided into two 

main categories: traditional methods and learning-

based approaches. Traditional algorithms typically 

focus on adjusting key image parameters, such as 

contrast, brightness, and denoising, through explicit 

mathematical models and handcrafted filters, often 

requiring careful fine-tuning of hyperparameters to 

adapt to varying conditions. In contrast, learning-

based methods leverage data-driven models, 

particularly deep neural networks, to automatically 

learn complex mappings for enhancement and 

restoration from large datasets.  

 

Traditional Methods: Generally, infrared images 

are characterized by low contrast, low resolution, 

and blurred details. To solve these issues, 

traditional methods already used for visible 

imaging have been adopted to enhance thermal 

images. Histogram Equalization (HE) is a well-

known algorithm that can readily augment contrast 

[5]. It has been employed either in its basic form or 

an extended one. For instance, in [6], a multi-

objective HE model was proposed to enhance 

contrast while preserving the brightness of thermal 

images. Contrast adjustment techniques [6] can 

significantly improve image visibility, but their 

effectiveness often diminishes under uneven 

illumination. Contrast Limited Adaptive 

Equalization (CLAHE), based on local contrast 

modification (LCM) [7], it has also been suggested 

to emphasize subtle, hidden details and modify the 

contrast enhancement level. Wavelet-based 

approaches [8] decompose images into frequency 

bands, allowing for targeted enhancement and 

noise reduction. Despite their effectiveness, these 

methods typically require careful parameter tuning 

and can demand substantial computational 

resources. Improper settings can also potentially 

introduce undesirable artifacts. It is important to 

note that the equalization histogram methods 

presented typically produce similar results, but 

their use can amplify noise in the image. 

 

Learning-based Methods: Deep Neural Networks 

(DNNs) have recently been applied in numerous 

computer vision applications, including image 

classification, object detection, and recognition. 

Recently published methods for image 

enhancement have utilized DNN architectures to 

improve the visual quality of both thermal and 

visible images. [9] presents first attempts to address 

this issue, which employs a Convolutional Neural 

Network (CNN) for Super-Resolution. [10] 

presents DNN for enhancement, aiming to increase 

the spatial resolution of visible images. While 

many current methods for enhancing visible images 

primarily aim to improve the original image's 

spatial resolution, only a limited number of studies 

have addressed other factors, like low contrast and 

blurred edges, specifically in thermal image 

enhancement.  Recent advancements have explored 

deep learning methods leveraging neural network 

architectures for automated thermal image 

enhancement. These methods address noise 

reduction, contrast enhancement, and detail 

refinement. Notably, conditional generative 

adversarial networks (GANs) have effectively 

enhanced contrast and detail clarity while reducing 

noise amplification [11, 12]. However, existing 

techniques such as IE-CGAN [13], AGCCPF [14], 

BBCNN [15], and AGCWD [16] focus on specific 

types of degradation under uneven lighting, often 

leading to unsatisfactory enhancement outcomes 

with artificial contrast, particularly in complex 

lighting conditions.   

Pseudo-coloring, another critical method, 

transforms single-channel thermal images into 

visually interpretable multi-channel outputs, 

significantly enhancing image interpretability and 

facilitating downstream analysis tasks. Appropriate 

colormap selection can improve anomaly visibility 

and detection accuracy [17]. Although popular, 

traditional Jet (rainbow) colormaps exhibit non-

uniform luminance progression, creating artificial 

edges and interpretability issues. Recent 

developments have introduced perceptually 

uniform colormaps such as Viridis, Plasma, 

Magma, and Inferno [18], designed using 

CIELAB/HCL color spaces to ensure uniform 

brightness transitions and chromatic consistency. 

Despite their advantages, these palettes sometimes 

lack the dynamic range to highlight subtle thermal 

variations. Google's Turbo colormap addresses 

some limitations with enhanced luminance 

continuity but may still indicate misleading 

category boundaries, especially in green-yellow 

transitions [19]. Parametric probability-density 

transformations [20] effectively emphasize specific 

temperature ranges, significantly improving lesion-

to-background contrast in medical imagery, but 

exhibit sensitivity to parameter choices. The 

Thermal-Rainbow colormap [21] provides an 
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intuitive "cool-to-warm" color progression, 

reducing abrupt transitions characteristic of the Jet 

colormap, although it remains less uniform than 

sequential palettes. 

 

 

 
Figure1. Overall architecture of the proposed method 

A critical demand remains for simple yet 

effective thermal enhancement and coloring 

methodologies. This paper proposes a unified 

thermal image enhancement pipeline that combines 

decomposition-based image processing, robust 

illumination balancing, and analytically designed 

pseudo-coloring schemes. Our method is designed 

to maintain high-quality visual outputs suitable for 

human interpretation and downstream computer 

vision tasks.  

As outlined in the abstract, the proposed pipeline 

consists of three main stages: 

 

1. Decomposition and Brightness Balancing: 

We adopt an image decomposition method 

tailored explicitly for thermal imagery. This 

stage separates fine details from the base 

structure and introduces a novel brightness 

balancing and reconstruction technique for 

thermal infrared images. 

2. Pseudo-Coloring: We propose two innovative 

pseudo-coloring approaches: 

a. An infrared-based coloring method optimized 

for robustness in downstream analysis tasks. 

b. A light-green coloring approach that enhances 

visual interpretability for human operators. 

3. We validate our proposed method through 

extensive experiments on three publicly 

available datasets. We perform thorough 

evaluations involving image quality metrics 

and practical object detection scenarios, 

notably in autonomous driving applications. 

 

 

 

II. PROPOSED METHOD 
The proposed pipeline is structured as a 

sequential four-stage processing flow, as shown in 

Figure 1. The first stage involves decomposing 

each input thermal image into its constituent 

reflectance and illumination components using the 

URetinex-Net framework [22]. URetinex-Net is 

pre-trained on the LOL low-light dataset after 

converting all RGB image pairs to grayscale to 

closely match the statistical characteristics of 

single-channel thermal data. We maintain the 

original reflectance-consistency, illumination-

smoothness, and perceptual losses as detailed in 

[22]. This step generates an illumination map as an 

effective proxy for the scene's temperature 

distribution, simultaneously isolating essential 

structural information within the reflectance 

component. 

In the second stage, illumination is 

balanced using a Residual Channel Attention 

Network (RCAN) [23], which implements a 

trainable adaptation of classical histogram 

equalization [7]. Training pairs are created by 

applying histogram equalization with randomized 

clip limits set at 1.2. The network training is 

supervised using a composite loss function: 

 

ℒRCAN = λMSE

1

N
  L  p − Lbalanced p  

2

p

+

λTV
 |∇L  |1# 1 

 

 

Here, L represents the RCAN network 

output, ∇L denotes the discrete gradient operator, 

and N is the total pixel count. The mean squared 



 

        

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 7, Issue 05 May 2025,  pp: 471-482  www.ijaem.net  ISSN: 2395-5252 

  

 

 

 

DOI: 10.35629/5252-0705471482          |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 474 

error (MSE) component ensures effective exposure 

correction, while the total variation (TV) 

regularization term suppresses small-scale noise 

that typically results from histogram equalization. 

The resulting smoothed and balanced illumination 

L  is subsequently recombined with the reflectance 

map R to produce an enhanced grayscale image 

I = R ·  L . 

 

 
Figure 2. Qualitative comparison of Solar Panel and Breast datasets. 

 

In the third stage, the balanced grayscale 

image I undergoes pseudo-coloring, converting 

single-channel thermal data into visually 

interpretable three-channel RGB images. For each 

pixel, the grayscale intensity g =  I  x, y ∈
{0, … ,255} is used as an index into predefined 

analytical functions that produce corresponding 

RGB values: 

 

RGB g =  r g ,  g g ,  b g  T# 2  

 

These functions are analytically defined 

and pre-tabulated into 256-element arrays, as 

outlined in Table 1, for the infrared and light-green 

color schemes. The final stage integrates these 

pseudo-colored images directly into the original 

three-channel architecture of the YOLOv7 detector 

[24]. As pseudo-coloring inherently restores the 

required three-channel input, no further 

architectural adjustments to YOLOv7 are 

necessary. The object detector is fine-tuned 

specifically on the Autonomous Vehicles thermal 

dataset following the standard YOLOv7 training 

parameters and loss function, ensuring its effective 

adaptation to the enhanced and colored images 

generated by previous stages. 

Our proposed method uniquely integrates 

Retinex-based image decomposition, RCAN-

guided illumination balancing, advanced palette-

based pseudo-coloring, and a thermal-specific 

YOLOv7 object detector. This cohesive pipeline 

effectively normalizes image illumination, enriches 

visual interpretability through intuitive color 

mapping, and reliably detects objects under 

operationally realistic conditions. 

 

III. EXPERIMENTAL RESULTS 
This section presents the experimental 

results of our proposed approach in comparison 

with several existing methods, including AGCCPF, 

AGCWD, BBCNN, and IE-CGAN across various 

datasets, including Autonomous Vehicles [25], 

Solar Panels [26], and Breast datasets [27]. 

Through this comparative analysis, we aim to 

highlight each method's strengths and weaknesses 

and evaluate the proposed method's effectiveness 

against these techniques. Moreover, we compare 

our coloring technique with other widely used 

coloring methods to highlight its strengths. 

 

QUALITATIVE COMPARISON 

Figure 2 compares the enhancement 

performance of various methods on thermal images 

from solar panel monitoring and medical imaging 

datasets. The AGCWD and AGCCPF methods 

significantly amplify the brightness of already 
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bright regions, causing critical details in high-

temperature areas to become indistinct or lost. This 

brightness amplification severely limits their 

usability in practical applications such as precise 

solar panel fault detection and medical anomaly 

identification. BBCNN exhibits better stability by 

uniformly preserving overall contrast across the 

images, slightly emphasizing defect regions within 

the solar panels. However, it results in limited 

visibility improvements, potentially hindering the 

identification of subtle anomalies. IE-CGAN 

demonstrates superior performance by selectively 

enhancing contrast in moderately illuminated 

regions while controlling overexposure in brighter 

areas. Our proposed method successfully addresses 

these limitations by achieving an optimal balance 

between brightness and contrast enhancement. It 

distinctly reveals solar panel defects  

 

and significantly improves breast lesion visibility 

without excessively brightening already luminous 

areas. 

In Figure 3, we highlight the performance 

of deep learning-based methods, BBCNN and IE-

CGAN, alongside our proposed method, in 

scenarios with low-level details critical for 

 

Table 1.Pseudo-coloring algorithm for infrared and light-green options. 

Palette Channel definition Constants 

Infrared 

𝑅𝑒𝑑  

𝑟 𝑔 =   
0.3217 𝑔,   𝑔 <   20

𝑎 ·  𝑒𝑏𝑔 + 𝑐 · 𝑒𝑑𝑔 ,   𝑔 ≥ 20
  

a=360.9,b=−0.001182,c=−451.3, 

d=−0.0134 

𝐺𝑟𝑒𝑒𝑛   
𝑔 𝑔 

=   

0 𝑖𝑓 𝑔 < 74

𝑎0 +  (𝑎𝑘 · 𝑐𝑜𝑠(𝑘𝜔𝑔) + 𝑏𝑘 ·  𝑠𝑖𝑛 𝑘𝜔𝑔 ),   𝑒𝑙𝑠𝑒

3

𝑘=1

  

 

𝑎0=95.3,𝑎1=−100.4,𝑏1=−74.29, 

𝑎2=−5.162,𝑏2=27.98,𝑎3=9.364, 

𝑏3 =7.937,𝜔=0.01617 

𝑏 𝑔 =   𝑎𝑘 ·  𝑠𝑖𝑛 𝑏𝑘𝑔 +  𝑐𝑘 

5

𝑘=1

 

Blue      
𝑎1=483.1,𝑏1=0.01307,𝑐1=−1.157  

𝑎2=475.8,  𝑏2=0.01808,𝑐2=1.246 

𝑎3=110.7,  𝑏3=0.07156,  𝑐3=0.9868 

𝑎4=97.37,  𝑏4=0.06933,  𝑐4=−1.933 

𝑎5=5.184, 𝑏5=0.1332,  𝑐5=0.2161 

Light-

Green 

𝑅𝑒𝑑 

𝑟 𝑔 =   𝑎𝑘 ·  𝑠𝑖𝑛 𝑏𝑘𝑔 +  𝑐𝑘 

5

𝑘=1

 

𝑎1=385.5,𝑏1=0.009698,𝑐1=−0.1909 

𝑎2=222,  𝑏2=0.01261,𝑐2=2.775 

𝑎3=6.941,  𝑏3=0.05087,  𝑐3=1.198 

𝑎4=5.126,  𝑏4=0.05422,  𝑐4=3.995 

𝑎5=0.05556, 𝑏5=0.1116,  𝑐5=−0.439 

𝑔 𝑔 =   𝑎𝑘 ·  𝑠𝑖𝑛 𝑏𝑘𝑔 + 𝑐𝑘 

5

𝑘=1

 

Green    
𝑎1=645.5,𝑏1=0.009626,𝑐1=0.01047 

𝑎2=428.4,  𝑏2=0.0111,𝑐2=3.084 

𝑎3=6.55,  𝑏3=0.0643,  𝑐3=−2.701 

𝑎4=5.569,  𝑏4=0.06904,  𝑐4=−0.08461 

𝑎5=0.3554, 𝑏5=0.114,  𝑐5=−1.629 

𝑏 𝑔 =   𝑎𝑘 ·  𝑠𝑖𝑛 𝑏𝑘𝑔 +  𝑐𝑘 

5

𝑘=1

 

Blue    
𝑎1=293.8,𝑏1=0.0107,𝑐1=−0.178 

𝑎2=166.2,  𝑏2=0.01612,𝑐2=2.746 

𝑎3=24.42,  𝑏3=0.01839,  𝑐3=5.849 

𝑎4=10.02,  𝑏4=0.07467,  𝑐4=1 

𝑎5=9.035, 𝑏5=0.0788,  𝑐5=3.823 
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applications like autonomous driving. BBCNN 

tends to retain global consistency but again 

struggles to enhance crucial local features 

necessary for object detection tasks, often resulting 

in details being indistinguishable. IE-CGAN 

provides a noticeable improvement by amplifying 

local contrasts but occasionally over-enhances 

brighter regions, thus potentially reducing the 

clarity of critical structural edges. Our proposed 

method significantly improves the clarity of low-

level details essential for object detection, 

particularly for autonomous driving applications. It 

robustly preserves structural edges, maintains 

optimal brightness levels, and effectively enhances 

the subtle details crucial for reliable object 

recognition and decision-making systems. 

 

 
Figure 3. Qualitative comparison on the Autonomous vehicles dataset. 

 

 
Figure 4. Colorization results before and after enhancement by the proposed method. 

 

Figure 4 illustrates the transformative 

impact of pseudo-coloring after thermal 

enhancement. Before enhancement, thermal images 

present limited interpretability due to homogeneous 

brightness and a lack of distinct thermal 

differentiation. After enhancement, pseudo-

coloring notably amplifies interpretability. 

Specifically, the infrared color scheme correctly 

highlights high-temperature regions, significantly 

improving visibility and aiding the quick 
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identification of breast lesions and other 

temperature-critical anomalies. Conversely, the 

light-green palette provides enhanced visual 

comfort, making images more interpretable for 

continuous monitoring and extended analysis. 

 

 
Figure 5. Qualitative comparison of the proposed method against another colorization method. 

 

Figure 5 evaluates our proposed pseudo-

coloring techniques against conventional 

colormaps (Logistic-Viridis, Thermal-Rainbow, 

Turbo, and Viridis), each computed using their 

default parameters. Standard colormaps, while 

visually appealing, present notable interpretation 

challenges. Logistic-Viridis and Viridis, despite 

their perceptual uniformity, often lack dynamic 

range, inadequately differentiating minor thermal 

variations critical in medical imaging and solar 

panel diagnostics. Thermal-Rainbow, although 

intuitive due to its color progression, still suffers 

from reduced perceptual uniformity and 

occasionally misleading abrupt hue transitions. The 

Turbo colormap, offering an improved luminance 

progression compared to traditional rainbow 

schemes, still occasionally introduces misleading 

categorical boundaries, particularly around the 

green-yellow transition. Our proposed infrared and 

light-green palettes comprehensively address these 

limitations. The infrared method distinctly 

enhances anomalies due to its strong contrast and 

intuitive "hot-cold" visual cues, significantly aiding 

in rapid anomaly detection. The light-green method 

provides excellent visual interpretability and user 

comfort, critical for prolonged analysis sessions 

and continuous real-time monitoring. The results 

highlight that our proposed method effectively 

combines superior enhancement performance with 

robust, interpretable pseudo-coloring techniques. It 

is highly suitable for practical deployment in 

diverse thermal imaging applications, including 

solar panel fault detection and autonomous driving 

systems. 

Furthermore, as illustrated in Figure 6, numerous 

objects remain undetected in the original thermal 

video; however, after applying our enhancement, 

the detection results significantly improve. 

 

QUANTITATIVE COMPARISON 

To evaluate the effectiveness of the proposed 

method, we utilize three image quality metrics:  

(i) The Measure of Enhancement (EME) [28] 

measures the contrast based on modified Weber’s 

law, which is defined as the average of the local 

maximum and minimum grayscale intensities ratio 

in each sub-block. 

 

𝐸𝑀𝐸 𝐼 =  
1

𝑀 × 𝑁
  20 𝑙𝑜𝑔

 𝐼𝑚𝑎𝑥  𝑖,𝑗
𝑚 ,𝑛

 𝐼𝑚𝑖𝑛  𝑖,𝑗
𝑚 ,𝑛 + 𝑐

𝑁

𝑗=1

𝑀

𝑖=1

# 3  

 

where [𝐼𝑚𝑖𝑛 ]𝑖,𝑗
𝑚,𝑛

 and [𝐼𝑚𝑎𝑥 ]𝑖 ,𝑗
𝑚 ,𝑛

 denote the local 

minimum and maximum intensity level in each 

𝑚 × 𝑛 local block. 𝑐 represents a constant to avoid 

calculation errors due to a logarithmic operation. 

In this metric, the image is divided into 

𝑛 blocks, where  𝐼𝑚𝑎𝑥
𝑘 , 𝐼𝑚𝑖𝑛

𝑘  represent the maximum 

and minimum pixel intensities within the 𝑘 blocks, 

respectively. A small constant 𝑐 is included to 

prevent division by zero [29]. 

(ii) Block Distribution-Based Information Measure 

(BDIM) [30] is a thermal image quality metric 
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based on Human Visual System (HVS) attributes 

such as local resolution, contrast, and sharpness.  

 
𝐵𝐷𝐼𝑀 𝑝, 𝐼 = 

1

𝑀 × 𝑁
  

1

 
𝑝𝑚𝑖𝑛
𝑚 ,𝑛

𝑝𝑚𝑖𝑛
𝑚 ,𝑛 +𝑝𝑚𝑎𝑥

𝑚 ,𝑛   
(𝐼𝑚𝑖𝑛 )𝑖,𝑗

𝑚 ,𝑛

(𝐼𝑚𝑖𝑛 )𝑖,𝑗
𝑚 ,𝑛+ 𝐼𝑚𝑎𝑥  𝑖,𝑗

𝑚 ,𝑛 
2

+ 𝑐

𝑁

𝑗=1

𝑀

𝑖=1

# 4  

 

where 𝑝𝑚𝑖𝑛  and 𝑝𝑚𝑎𝑥  respectively denote the 

minimum probability density value and the 

maximum probability density value in each local 

tile [𝑚, 𝑛],  (𝐼𝑚𝑖𝑛 )𝑖,𝑗
𝑚,𝑛

 and (𝐼𝑚𝑎𝑥 )𝑖,𝑗
𝑚 ,𝑛

represent the 

minimum intensity value and the maximum 

intensity value in each local tile [𝑚, 𝑛], 
respectively, and 𝑐 refers to an offset value [29]. 

(iii) The Global Contrast Measure of Enhancement 

(MDIMTE) [31] integrates principles from the 

human visual system, information theory, and 

distribution-based analysis to assess enhancement 

quality. This metric offers a comprehensive  

 

evaluation by capturing global contrast 

improvements in a manner that aligns with human 

perception and reflects the efficiency of 

information distribution across the image. 

 

𝑀𝐷𝐼𝑀𝑇𝐸 𝐼 =  
1

𝑀 × 𝑁
  

 𝑝𝐷 𝑖,𝑗
𝑚,𝑛

 𝑝𝐵 𝑖 ,𝑗
𝑚 ,𝑛

𝑁

𝑗=1

 
 𝐼𝐷 𝑖,𝑗

𝑚,𝑛

 𝐼𝐵 𝑖,𝑗
𝑚,𝑛 

2𝑀

𝑖=1

# 5  

 

where  𝐼𝐷 𝑖,𝑗
𝑚,𝑛

 and  𝐼𝐵 𝑖 ,𝑗
𝑚 ,𝑛

 represent the local 

darkness and brightness intensity level, 

respectively, and where  𝑝𝐷 𝑖 ,𝑗
𝑚 ,𝑛

 and  𝑝𝐵 𝑖,𝑗
𝑚,𝑛

 are 

the local darkness and brightness density in each 𝑚 

× 𝑛 local block [29]. 

(iv) Local and Global Thermal Assessment 

(LGTA) [29], which integrates local and global 

features to evaluate thermal image quality 

comprehensively. Combining block-level analysis 

with global intensity distribution closely aligns 

with human perception, offering nuanced insights 

into image clarity and enhancement. The local 

thermal quality metric is determined by dividing 

the image into 𝑘 ×  𝑘 blocks, then equations 

presented below are applied to these blocks using 

block-dependent local mean thresholds. 

 

𝑎′ =  
(𝑚𝑎𝑥⁡(𝐼𝐿))𝑚,𝑛 + 1

(𝑚𝑖𝑛⁡(𝐼𝐿))𝑚,𝑛 + 2
 

𝛽

;  𝐼𝐿 =  𝐼𝑖 ,𝑗  𝐼𝑖 ,𝑗  ≤ 𝑥µ} 

 

𝑎𝑚,𝑛 =  𝑎′ 𝑐𝑜𝑠 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑎′ + 1 + 1  # 6  

 

𝑏′ =  
(𝑚𝑎𝑥⁡(𝐼𝑈))𝑚,𝑛 + 1

(𝑚𝑖𝑛⁡(𝐼𝑈))𝑚,𝑛 + 2
 

𝛽

;  𝐼𝑈 =  𝐼𝑖 ,𝑗  𝐼𝑖 ,𝑗  ≤ 𝑥µ} 

 

𝑏𝑚,𝑛 =  𝑏′ 𝑐𝑜𝑠 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑏′ + 1 + 1 # 7  

 

 

where 𝑥µ is the mean pixel value of the (𝑚, 𝑛) 

block, 𝛽 is a parameter (for example, 𝛽 = 1, 𝛽> 1 

or 𝛽< 1), and 𝑚𝑎𝑥()(𝑚𝑖𝑛) function calculates the 

block's third maximum (minimum) value if 

possible. The Local Thermal Assessment (LTA) is 

then computed: 

 

Table 2. Quantitative comparison of the proposed method against other methods. 

Datasets Methods EME↑ BDIM↑ MDIMTE↑ LGTA↑ 

Autonomous Vehicles 

AGCWD 2.21 0.92 49.35 1.141 

AGCCPF 2.54 0.94 53.15 1.252 

BBCNN 2.19 0.94 53.82 1.180 

IE-CGAN 6.15 0.95 46.27 1.189 

Proposed 9.18 0.96 54.12 1.312 

SOLAR 

AGCWD 2.10 0.91 51.48 1.101 

AGCCPF 2.34 0.94 54.23 1.284 

BBCNN 3.30 0.95 54.98 1.191 

IE-CGAN 6.33 0.95 48.12 1.239 

Proposed 10.80 0.97 55.89 1.352 

BREAST 

AGCWD 4.27 0.93 48.14 1.014 

AGCCPF 4.05 0.94 52.16 1.124 

BBCNN 4.45 0.94 53.52 1.191 

IE-CGAN 11.20 0.95 45.27 1.212 

Proposed 11.74 0.96 53.91 1.287 
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𝐿𝑇𝐴 𝐼 =  
1

𝑀 × 𝑁
   𝑎𝑚,𝑛 + 𝑏𝑚,𝑛 

𝑁

𝑗=1

𝑀

𝑖=1

# 8 

 

 

Table 3. Detection performance (mAP) on various inputs and models. 

Measure Original Images Proposed Method 

mAP0.5 48.2 50.8 

mAP0.75 16.3 18.5 

mAP0.5:0.95 22.5 24.1 

 

Capturing local variations and subtle 

details is crucial for accurate quality assessment in 

thermal image analysis. Traditional global metrics 

often overlook these nuances, leading to potentially 

misleading evaluations. To address this, they 

introduce the LTA metric, designed to provide a 

fine-grained image quality assessment by focusing 

on local image characteristics. The Global Thermal 

Assessment (GTA) quality metric is calculated as 

follows: 

 
Figure 3. Object detection performance on real-world road video before and after enhancement. 

 

𝑁𝑆 =  
𝑠𝑡𝑑 𝐼𝑆 

 1 +  𝑠𝑡𝑑 𝐼𝑆 −  𝑠𝑡𝑑 𝐼   
# 9  
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𝐺𝑇𝐴 =  
𝑁𝑆

  𝑙𝑜𝑔  𝑙𝑜𝑔  
𝑝𝑖,𝑗

𝑝𝑖 ·𝑝𝑗  
+ 1 + 1 𝑁

𝑗=1
𝑀
𝑖=1

# 10 
 

 

where 𝑝𝑖   , 𝑝𝑗   , and 𝑝𝑖 ,𝑗  are the pixel’s probability 

mass function (PMF) values in the current row, 

column, and whole image, respectively. The 𝑁𝑆 

quantifies the noise level in the image, where 

𝑠𝑡𝑑(𝐼𝑆) represents the standard deviation of the 

smoothed image 𝐼𝑆  , and 𝑠𝑡𝑑(𝐼) represents the 

standard deviation of the original image 𝐼. The 

GTA measure comprehensively evaluates image 

quality by integrating 2D image histograms with 

column-wise and row-wise histograms. The 2D 

histogram captures the overall intensity 

distribution, while the column-wise and row-wise 

histograms reveal spatial variations, enabling a 

deeper understanding of image quality by 

considering global characteristics. This method is 

robust against spatial shifts and rotations—

common challenges in image analysis—because it 

incorporates column-wise and row-wise 

histograms, which reduce the sensitivity of 

traditional 2D histograms to such transformations. 

GTA’s enhanced sensitivity to specific image 

degradations, such as blur, noise, and contrast 

distortions, is particularly valuable for thermal 

imaging, which often presents unique image 

characteristics and degradations. To incorporate the 

local and global features of the thermal image, they 

define a combined Local and Global Thermal 

Assessment (LGTA) metric as a linear combination 

of LTA and GTA. 

 

LGTA = 0.5 · LTA+ 0.5 · GTA # 11  

 

High scores across these metrics reflect 

superior image enhancement and a more natural 

visual appearance. Table 2 presents the 

comparative analysis results, highlighting the 

proposed method's performance relative to existing 

approaches. The proposed method consistently 

outperforms traditional and learning-based 

techniques, achieving the highest average scores in 

EME, BDIM, MDIMTE, and LGTA. These 

findings underscore the effectiveness of the 

proposed framework in enhancing thermal images 

while preserving critical structural details and 

maintaining perceptual naturalness.  

To further demonstrate the practical 

effectiveness of the proposed framework, we 

conducted a series of object detection experiments 

using YOLOv7. This evaluation is particularly 

relevant to autonomous driving scenarios, where 

accurate and robust object detection under varying 

thermal conditions is essential for ensuring safety 

and operational reliability. Separate YOLOv7 

models were trained using default hyperparameters 

on the colorized far-infrared images from the 

Autonomous Vehicles dataset [25], with two 

configurations: original thermal images and images 

enhanced by the proposed method.  

For quantitative evaluation, we employed 

standard object detection metrics, including mean 

Average Precision at a 50% Intersection over 

Union (IoU) threshold (mAP0.5), mean AP at a 75% 

IoU threshold (mAP0.75), and the average AP across 

IoU thresholds from 0.5 to 0.95 (mAP0.5:0.95). 

Table 3 summarizes the detection results 

under each experimental setting. The findings 

indicate that all enhanced image variants yielded 

superior detection performance compared to their 

original counterparts. Notably, the proposed 

method achieved a 2.6% improvement in mAP0.5, a 

2.2% improvement in mAP0.75, and a 1.6% gain in 

mAP0.5:0.95, underscoring its practical utility for 

real-world applications such as autonomous vehicle 

perception. 

 

Table 4. Ablation study using Detection on colorized and enhanced images 

Measure Enhanced Colorized 

mAP0.5 50.1 50.8 

mAP0.75 17.8 18.5 

mAP0.5:0.95 23.4 24.1 

 

IV. ABLATION STUDY 
We conducted a series of ablation 

experiments to assess the contribution of the 

colorization process to the object detection 

performance. Specifically, we trained the object 

detection network with and without the colorized 

images after enhancement. Table 4 shows that 

accuracy significantly improved when the detection 

was trained with colorful images using mAP0.5, 

mAP0.75, and mAP0.5:0.95 measures. This further 

highlights the importance of colorizing methods in 

downstream tasks such as Autonomous Driving 

systems. 
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V. CONCLUSION 
This paper introduces a unified pipeline 

for thermal image enhancement, effectively 

addressing limitations such as low contrast and 

indistinct details that impede human interpretation 

and automated analysis. Our approach significantly 

improves visual clarity and preserves crucial 

structural information by systematically combining 

decomposition, illumination balancing, and a 

pseudo-coloring scheme. Extensive experiments on 

diverse benchmark datasets show that our method 

consistently outperforms existing techniques. 

Enhanced images produced by the proposed 

pipeline deliver superior visual quality and 

preserve fine details, improving performance in 

automated object detection tasks.  

Building on these promising results, future 

research will focus on refining the pipeline further. 

This involves exploring advanced techniques or 

adaptive parameterization for its core stages. 

Optimizing for deployment on resource-

constrained edge devices remains a priority to 

enhance its utility in real-time systems prevalent in 

autonomous driving and portable diagnostics. 

Finally, a significant avenue for exploration is how 

these enhanced images can serve as superior input 

for training more complex deep learning models, 

potentially improving performance in tasks such as 

semantic segmentation or anomaly detection in 

thermal imagery. 
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